

New Oxford Textbook of **Psychiatry**

THIRD EDITION

EDITED BY

John R. Geddes Nancy C. Andreasen Guy M. Goodwin

ALL CONTENT AVAILABLE AT OXFORDMEDICINE.COM

New Oxford Textbook of

New Oxford Textbook of

Psychiatry

THIRD EDITION

EDITED BY

John R. Geddes

Professor of Epidemiological Psychiatry Head of the Department of Psychiatry Warneford Hospital University of Oxford Oxford, UK

Nancy C. Andreasen

Professor of Psychiatry Andrew H. Woods Chair of Psychiatry Department of Psychiatry University of Iowa Carver College of Medicine Iowa City, USA

Guy M. Goodwin

Senior Research Fellow Department of Psychiatry Warneford Hospital University of Oxford Oxford, UK

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© Oxford University Press 2020

Chapter 35 © National Institute of Health 2019. Author's contribution to the Work was done as part of the Author's official duties as a NIH employee and is a Work of the United States Government. Therefore, copyright may not be established in the United States (Chapter 35).

The moral rights of the authors have been asserted

First Edition published 2000

Second Edition published 2009

Third Edition published 2020

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data

Data available

Library of Congress Control Number: 2019931646

ISBN 978-0-19-871300-5

Printed in Great Britain by Bell & Bain Ltd., Glasgow

Oxford University Press makes no representation, express or implied, that the drug dosages in this book are correct. Readers must therefore always check the product information and clinical procedures with the most up-to-date published product information and data sheets provided by the manufacturers and the most recent codes of conduct and safety regulations. The authors and the publishers do not accept responsibility or legal liability for any errors in the text or for the misuse or misapplication of material in this work. Except where otherwise stated, drug dosages and recommendations are for the non-pregnant adult who is not breast-feeding

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

Preface

This is the third edition of the textbook. We decided to rethink the size and content completely when planning this edition. Our sense was that a larger and larger archive of accumulated knowledge is no longer feasible or desirable in the digital age. We wanted to produce a single volume with a more defined point of view, that better reflects the challenge of the future.

Psychiatry is a medical specialty. Medicine took its origins in simple observation and classification and the serendipitous discovery of palliative treatments. The application of science has transformed much of medicine by providing an understanding of mechanisms of pathology. The scientific method provides the only way to reliable knowledge, and medical science is slowly developing rational treatments that are potentially curative. However, aside from treatable infections, we have a long way to go. The trajectory of medical advance in the practice of psychiatry has been slower than for other disease areas in recent years, but neuroscience is difficult. What underwrites our confidence in what is sometimes disparagingly described as the medical model is the fact that psychiatric disorders, especially severe disorders, have a genetic basis. Genetic risks are largely unidirectional and they are biological. They guarantee some kind of future biological explanation for the phenomena they describe. So if you decide that schizophrenia is a myth, a social construct, or a plot by psychiatrists to enhance their social status, you have to explain why its inheritance is what it is.

If, like us, you find the genetic data compelling, then you accept the grand challenge of working out the neurobiology of psychiatric disorder. We cannot know how quickly it will translate into improved treatments, but we think there are already promising developments from molecular biology and neuroimaging. Imaging has been particularly important because it has stimulated the development of a completely brain-based cognitive neuroscience. This is a major intellectual shift. Forty years ago, an experimental psychologist would have said that the brain was unimportant for the study of mental mechanisms and even less important for the development of psychological treatments. As this view changes, so the advances of neuroscience can be translated into patient benefit as scientifically guided psychotherapy.

Our authors are drawn from all over the world, and they illustrate the simple truth that science is universal. We thank them most sincerely for their efforts in bringing the project to completion.

The layout of the book

The content of chapters was not highly pre-specified, and the chapters themselves have not been edited for conformity with the editors' views. They can be read as free-standing contributions. Accordingly, there is both overlap and divergence in how topics are covered, which will reflect the writers' priorities and interests.

In the previous edition of the textbook, the editors identified convergence as an important theme of the book. We are not convinced further convergence has occurred since 2001. Instead we have seen a surprising amount of divergence in the claims made about psychiatry. Our section on approaches to psychiatry reflects some of the key issues relating to the patient's perspective, stigma, the global challenge of mental disorder, practical ethics, and the foundations of psychiatry as phenomenology and a medical discipline. It further sets the scene for current controversies around diagnosis, psychopathology, evidence, and drug terminology.

The chapters in the section on the scientific basis of psychiatric aetiology and treatment provide simple introductions to the relevant disciplines that underpin our scientific understanding.

Individual disorders are covered in sections that follow the structure of the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5). DSM-5 was published in 2013. It had been envisaged that it would be possible to make major changes to the approach of DSM-IV. Thus, major advances in genetics, imaging, and neurobiology were widely expected to transform psychiatry, following the success of the human genome project and the decade of the brain. This transformation has not yet happened. Hence, DSM-5 (and the International Classification of Diseases, eleventh revision) follow a much more conventional, clinically led summary of how patients present with psychiatric disorder. We see no reason to deny the utility of symptom-based diagnoses and the consensus that created the current categories. However, the project of applying neuroscience to psychiatry has not failed, as has sometimes been implied by criticism of DSM-5. For these reasons, we have included chapters on genetics, neurobiological targets, and imaging in the sections of the book focused on specific disorders.

We have also included sections on service provision and forensic psychiatry because these are critical to the context in which psychiatric disorder is managed.

We thank the staff of OUP for their support and encouragement and Andy Richford who has been our project manager sans pareil.

> John R. Geddes Nancy C. Andreasen Guy M. Goodwin

Professor Michael Gelder (1929-2018)

Michael Gelder, one of the founding editors of the New Oxford Textbook of Psychiatry, sadly died in 2018. We dedicate this new edition of the book to Michael's memory.

Michael was the first WA Handley Professor of Psychiatry at the University of Oxford and founded the Department of Psychiatry in 1969. He led the Department for 27 years until he retired in 1996. Before arriving in Oxford, at the Institute of Psychiatry, Michael developed a treatment for anxiety based on desensitization, in which gradual exposure to the feared stimulus was coupled with physical relaxation. He described the first controlled trial of this psychological therapy in patients with severe agoraphobia in his seminal 1966 publication with Isaac Marks.

Michael possessed remarkable organizational abilities and leadership skills and he built a thriving Department of Psychiatry in

Oxford with a particular focus on developing both psychological and physical treatments. This departmental focus continues into the present. When JRG interviewed him in 2018, very shortly before he died, Michael admitted to being particularly proud of the Department's development of cognitive behaviour therapy (CBT) under his leadership. These treatments include highly effective forms of CBT for anxiety disorders, post-traumatic stress disorder, chronic fatigue syndrome, and eating disorders. All have been widely adopted in clinical practice and have benefited enormous numbers of people worldwide. Michael also developed a psychopharmacology research unit based on powerful cross-departmental collaboration within the University. The unit has a strong track record of investigating the mechanisms of action of antidepressants and anxiolytics and its work has fundamentally shaped our understanding of the biology underlying psychiatric disorder.

Michael was also a committed and inspirational teacher and the driving force behind a successful series of psychiatry textbooks. The first, in 1983, was the *Oxford Textbook of Psychiatry* (now in its seventh edition). Translated into six languages, this became the standard textbook for psychiatric trainees. Then came the *Concise Textbook* (aimed at medical students and now in its fifth edition) and the current *New Oxford Textbook of Psychiatry* (targeted at postgraduates—this is the third edition).

As he passed the age of 80, Michael had finally retired from editing textbooks (although he was delighted that his colleagues continue to revise them!), but he closely followed the development of the Department. He will be greatly missed. Michael was a truly remarkable clinical academic, inspirational in his ability to combine research with clinical practice, teaching, and leadership.

Contents

Abbreviations xv Contributors xxvii

SECTION 1

The subject matter and approach to psychiatry

- 1. **The patient's perspective** 3 Kay Redfield Jamison and Adam Ian Kaplin
- 2. Public attitudes and the challenge of stigma 6 Nicole Votruba, Mirja Koschorke, and Graham Thornicroft
- 3. Global mental health 12 Crick Lund, Dörte Bemme, and Judy Bass
- 4. The history of psychiatry as a medical specialty 23 Pierre Pichot and Guy M. Goodwin
- 5. New ethics for twenty-first century psychiatry 34 Matthew L. Baum, Julian Savulescu, and Ilina Singh
- 6. Foundations of phenomenology/descriptive psychopathology 42 Hans-Jürgen Möller
- 7. DSM-5 and ICD-11 classifications 51 Darrel A. Regier, David P. Goldberg, Bedirhan T. Üstün, and Geoffrey M. Reed
- 8. The National Institute of Mental Health Research Domain Criteria: an alternative framework to guide psychopathology research 62 Charles A. Sanislow, Sarah E. Morris, Jennifer Pacheco, and Bruce N. Cuthbert
- 9. Application of research evidence in clinical practice 73 Andrea Cipriani, Stefan Leucht, and John R. Geddes
- 10. A neuroscience-based nomenclature for psychotropic drugs 80

Guy M. Goodwin, Joseph Zohar, and David J. Kupfer

SECTION 2

The scientific basis of psychiatric aetiology and treatment

- 11. Neurodevelopment 91 Karl Zilles and Nicola Palomero-Gallagher
- 12. Neuroimaging technologies 101 Mark Woolrich, Mark Jenkinson, and Clare Mackay
- **13. The connectome** 113 Olaf Sporns
- 14. Neurotransmitters and signalling 122 Trevor Sharp
- 15. **Psychoneuroimmunology** 135 Juan C. Leza, Javier R. Caso, and Borja García-Bueno
- 16. **Functional genomics** 144 *Caleb Webber*
- 17. Cognitive neuroscience: principles and methods 154 Anna Christina Nobre
- 18. Ageing and the human brain 170 Verena Heise, Enikő Zsoldos, and Klaus P. Ebmeier
- **19. Development of brain stimulation** 183 Andrea Crowell, Patricio Riva-Posse, and Helen S. Mayberg
- 20. Adherence to treatment in psychiatry 193 Amy Chan and Rob Home

SECTION 3

Intellectual disabilities

- 21. Core dimensions of intellectual disabilities 207 Anthony J. Holland
- 22. Epidemiology and course of intellectual disabilities 216 Sally-Ann Cooper

- 23. Aetiology of intellectual disability and its clinical features 223 Judith L. Rapoport, Dale Zhou, and Kwangmi Ahn
- 24. Management and treatment of intellectual disability 231 José L. Ayuso-Mateos and Cary S. Kogan

SECTION 4

Autism spectrum disorders

- 25. Core dimensions of autism spectrum disorders 239 Fred R. Volkmar and Scott L. J. Jackson
- 26. Basic mechanisms and treatment targets for autism spectrum disorders 246 Emily J. H. Jones
- 27. Epidemiology of autism 260 Charles R. Newton
- 28. Genetics of autism spectrum disorders 270 Abha R. Gupta, Thomas V. Fernandez, and Ellen J. Hoffman
- **29. Imaging of autism spectrum disorders** 279 Christine Ecker and Declan Murphy
- 30. Management and treatment of autism spectrum disorders 289 Emily Simonoff

SECTION 5

Attention-deficit/hyperactivity disorder

- 31. Core dimensions of attention-deficit/ hyperactivity disorder 301 Eric Taylor
- 32. Basic mechanisms and treatment planning/ targets for attention-deficit/hyperactivity disorder 309 Barbara Franke and Jan K. Buitelaar
- 33. Epidemiology of attention-deficit/hyperactivity disorder and the implications for its prevention 318 Guilherme V. Polanczyk
- 34. Genetics of attention-deficit/hyperactivity disorder 327 Kate Langley and Anita Thapar

- 35. Insights from neuroanatomical imaging into attention-deficit/hyperactivity disorder throughout the lifespan 335 Philip Shaw and Eszter Szekely
- 36. Management and treatment of attention-deficit/ hyperactivity disorder 344 Alessandro Zuddas and Sara Carucci

SECTION 6

Motor disorders

37. Neurodevelopmental motor disorders 357 Davide Martino and Antonella Macerollo

SECTION 7

Delirium, dementia, and other cognitive disorders

- Pathways of neurodegeneration underlying dementia 373
 Noel J. Buckley and George K. Tofaris
- **39. Delirium** 382 Ravi S. Bhat and Kenneth Rockwood
- 40. Alzheimer's disease 395 Ivan Koychev and John Gallacher
- 41. Frontotemporal dementias 405 Akitoshi Takeda and Bruce Miller
- **42. Prion disease** 414 Akin Nihat, TzeHow Mok, and John Collinge
- 43. Dementia with Lewy bodies 424 Anto P. Rajkumar and Dag Aarsland
- 44. Dementia in Parkinson's disease 435 Michele Hu and Fahd Baig
- 45. Dementia due to Huntington's disease 448 Russell L. Margolis
- **46. Vascular cognitive impairment** 454 *Joanne A. Byars and Ricardo E. Jorge*
- **47. Traumatic brain injury** 464 Christian Lepage, Inga K. Koerte, Vivian Schultz, Michael J. Coleman, and Martha E. Shenton

SECTION 8

Substance use disorders

- Substance use disorders and the mechanisms of drug addiction 477 Trevor W. Robbins and Barry J. Everitt
- **49. Genetics of substance use disorders** 492 Yann Le Strat, Nicolas Ramoz, and Philip Gorwood
- 50. Alcohol use disorder 498 Wim van den Brink and Falk Kiefer
- 51. Opioids: heroin, methadone, and buprenorphine 507 Michael Farrell, Briony Larance, and Courtney Breen
- 52. Cannabis and mental illness 519 David J. Castle
- 53. **Stimulants, ecstasy, and other 'party drugs'** 525 Adam R. Winstock and Remy Flechais
- 54. Psychedelics and dissociative substances 539 Adam R. Winstock and James Rucker
- 55. Tobacco addiction 546 Marcus Munafò and Meryem Grabski
- 56. **Co-morbidity of substance use and psychiatric disorders** 555 Julia M. A. Sinclair and Anne Lingford-Hughes

SECTION 9

Schizophrenia and psychotic disorders

- 57. The core dimensions of schizophrenia 565 Nancy C. Andreasen
- 58. Epidemiology and course of schizophrenia 574 Assen Jablensky
- 59. Genetics of schizophrenia 587 Kimberley M. Kendall, James T. R. Walters, and Michael C. O'Donovan
- 60. Structural and functional neuroimaging of schizophrenia 597 Andreea O. Diaconescu, Sandra Iglesias, and Klaas E. Stephan
- 61. Schizoaffective and schizotypal disorders/acute and transient psychotic disorders 609 William S. Stone, Stephen V. Faraone, and Ming T. Tsuang

- 62. Delusional disorders 619 Andreas Marneros
- 63. Prevention and early intervention in psychotic disorders 628 Emre Bora, Mahesh Jayaram, and Christos Pantelis
- 64. Antipsychotic and anticholinergic drugs 639 Herbert Y. Meltzer and William V. Bobo
- 65. The treatment and management of patients with schizophrenia 668

Joseph P. McEvoy, Kammarauche Asuzu, Daniel W. Bradford, Oliver Freudenreich, and Katherine H. Moyer

SECTION 10

Mood disorders

- 66. Diagnosis, classification, and differential diagnosis of mood disorders 681
 S. Nassir Ghaemi and Sivan Mauer
- 67. Epidemiology of mood disorders 691 Lars Vedel Kessing
- 68. Primary prevention of mood disorders: building a target for prevention strategies 700 Gin S. Malhi

SECTION 11

Bipolar disorder

- 69. Basic mechanisms of and treatment targets for bipolar disorder 721 Grant C. Churchill, Nisha Singh, and Michael J. Berridge
- 70. Genetics of bipolar disorder 735 Francis J. McMahon and Sevilla Detera-Wadleigh
- 71. Neuroimaging of bipolar disorder 744 Mary L. Phillips and Wayne C. Drevets
- 72. Management and treatment of bipolar disorder 757 Eduard Vieta, Isabella Pacchiarotti, and David J. Miklowitz
- 73. Perinatal psychiatry 767 Ian Jones and Arianna Di Florio

SECTION 12

Depressive disorders

- 74. Basic mechanisms of and treatment targets for depressive disorders 779 Marcela Pereira, Roberto Andreatini, and Per Svenningsson
- 75. Genetic epidemiology of depression in the molecular era 789 Alison K. Merikangas and Kathleen R. Merikangas
- **76. Imaging of depressive disorders** 797 Guy M. Goodwin and Michael Browning
- 77. Management and treatment of depressive disorders 807 Philip J. Cowen

SECTION 13

Trauma- and stress-related and adjustment disorders

 Classification and descriptive psychopathology of post-traumatic stress disorder and other stressor-related disorders 819 Dean G. Kilpatrick, Matthew J. Friedman,

and Amanda K. Gilmore

- 79. Basic mechanisms of, and treatment targets for, stress-related disorders 829 Bruce S. McEwen
- 80. Genetics of stress-related disorders 840 Michael G. Gottschalk and Katharina Domschke
- 81. Imaging of stress-related disorders 850 Navneet Kaur, Cecilia A. Hinojosa, Julia Russell, Michael B. VanElzakker, and Lisa M. Shin
- 82. Primary prevention and epidemiology of traumaand stress-related disorders 860 Maria Bragesjö, Emily A. Holmes, Filip K. Arnberg, and Erik M. Andersson
- 83. Management and treatment of stress-related disorders 869 Leigh van den Heuvel and Soraya Seedat
- 84. Bereavement 879 Beverley Raphael[†], Sally Wooding, and Julie Dunsmore
- 85. **Recovered memories and false memories** 884 Deborah Davis and Elizabeth F. Loftus

SECTION 14

Anxiety disorders

- 86. Core dimensions of anxiety disorders 897 Nastassja Koen and Dan J. Stein
- 87. Basic mechanisms, genetics, targets, and animal models for anxiety disorders 905 Martien J. Kas and Berend Olivier
- 88. Epidemiology of anxiety disorders 917 Hans-Ulrich Wittchen and Katja Beesdo-Baum
- 89. Genetics of anxiety disorders 928 Michael G. Gottschalk and Katharina Domschke
- **90. Neuroimaging of anxiety disorders** 938 Gregor Leicht and Christoph Mulert
- 91. The primary prevention of anxiety disorders 948 Aliza Werner-Seidler, Jennifer L. Hudson, and Helen Christensen
- 92. Treatment of anxiety disorders 961 David S. Baldwin and Nathan T. M. Huneke

SECTION 15

Obsessive-compulsive and related disorders

- 93. Core dimensions of obsessive-compulsive disorder 969 Sophie C. Schneider, Eric A. Storch, and Wayne K. Goodman
- 94. Basic mechanisms of, and treatment/planning targets for obsessive-complusive disorder 976 Eric Burguière and Luc Mallet
- 95. Obsessive-compulsive disorder 987 Lior Carmi, Naomi A. Fineberg, Oded Ben Arush, and Joseph Zohar
- 96. Genetics of obsessive-compulsive disorder 995 Gerald Nestadt and Jack Samuels
- **97. Imaging of obsessive-compulsive disorder** 1003 *Rebbia Shahab and Emily R. Stern*
- 98. Management and treatment of obsessivecompulsive disorder 1011 Naomi A. Fineberg, Lynne M. Drummond, Jemma Reid, Eduardo Cinosi, Lior Carmi, and Davis N. Mpavaenda
- **99. Hoarding disorder** 1023 Lorena Fernández de la Cruz and David Mataix-Cols

100. Body dysmorphic disorder 1031 Megan M. Kelly and Katharine A. Phillips

SECTION 16

Feeding, eating, and metabolic disorders

- 101. The eating disorders 1045 Christopher G. Fairburn and Rebecca Murphy
- 102. Basic mechanisms and potential for treatment of weight and eating disorders 1048 Johannes Hebebrand, Jochen Antel, and Beate Herpertz-Dahlmann
- 103. Epidemiology and primary prevention of feeding and eating disorders 1059 Katherine A Halmi
- 104. Genetics of feeding and eating disorders 1065 Christopher Hübel, Cynthia M. Bulik, and Gerome Breen
- 105. Imaging of feeding and eating disorders 1075 Natalie Kurniadi, Christina E. Wierenga, Laura A. Berner, and Walter H. Kaye
- 106. Management and treatment of feeding and eating disorders 1087 Susan L. McElroy, Anna I. Guerdjikova, Nicole Mori, Paul L. Houser, and Paul E. Keck, Jr.
- 107. Aetiology and management of obesity 1096 Jamie Hartmann-Boyce, Nerys M. Astbury, and Susan A. Jebb
- 108. Elimination disorders in children and adolescents 1105 Alexander von Gontard

SECTION 17

Sleep-wake disorders

- 109. Basic mechanisms of, and possible treatment targets for, sleep-wake disorders 1115 David Pritchett, Angus S. Fisk, Russell G. Foster, and Stuart N. Peirson
- 110. Diagnosis of sleep and circadian rhythm disorder 1124 Kirstie N. Anderson
- 111. Epidemiology of sleep-wake and primary prevention of its disorders 1137 Lena Katharina Keller, Eva C. Winnebeck, and Till Roenneberg

- 112. Genetics of sleep-wake disorders 1148 Diego R. Mazzotti, Allan I. Pack, and Philip R. Gehrman
- 113. Multimodal imaging of sleep-wake disorders 1156 Umberto Moretto, Dylan Smith, Liliana Dell'Osso, and Thien Thanh Dang-Vu
- 114. Management of insomnia and circadian rhythm sleep-wake disorders 1167 Simon D. Kyle, Alasdair L. Henry, and Colin A. Espie

SECTION 18

Gender dysphoria and sexual dysfunction

- 115. The sexual dysfunctions and paraphilias 1181 Cynthia A. Graham and John Bancroft
- 116. Gender dysphoria 1191 Els Elaut and Gunter Heylens

SECTION 19

Personality disorders

- 117. Core dimensions of personality pathology 1201 Andrew E. Skodol and Leslie C. Morey
- 118. Basic mechanisms of, and treatment planning/ targets for, personality disorders 1211 Kate E. A. Saunders and Steve Pearce
- 119. Personality disorders: epidemiology and clinical course 1218
 Renato D. Alarcón and Brian A. Palmer
- 120. Genetics of personality disorders 1229 C. Robert Cloninger
- **121. Imaging of personality disorders** 1239 Christian Paret and Christian Schmahl
- 122. Treatment and management of personality disorder 1247 Giles Newton-Howes and Roger Mulder

SECTION 20

Impulse-control and conduct disorders

123. Impulse-control and its disorders, including pathological gambling 1257 Donald W. Black 124. Conduct disorders and antisocial personality disorder in childhood and adolescence 1265 Stephen Scott and Melanie Palmer

SECTION 21

Suicide

- 125. Epidemiology and causes of suicide 1279 Merete Nordentoft, Trine Madsen, and Annette Erlangsen
- 126. Self-harm: epidemiology and risk factors 1289 Nav Kapur, Sarah Steeg, and Adam Moreton
- 127. Biological aspects of suicidal behaviour 1296 J. John Mann and Dianne Currier
- 128. Prevention of suicide and treatment following self-harm 1303 Keith Hawton, Kate E. A. Saunders, and Alexandra Pitman

SECTION 22

Somatic symptoms and related disorders

- 129. Deconstructing dualism: the interface between physical and mental illness 1317 Michael Sharpe and Jane Walker
- 130. Neural mechanisms in chronic pain relevant for psychiatric interventions 1320 Chantal Berna and Irene Tracey
- 131. Treatment of fibromyalgia (chronic widespread pain) and chronic fatigue syndrome 1330 Jonathan Price
- **132. Factitious disorder and malingering** 1342 Thomas Merten and Harald Merckelbach
- 133. Functional neurological symptom disorder (conversion disorder) 1350 Jon Stone and Michael Sharpe

SECTION 23

Service provision

134. Public policy and service needs in mental health 1363 Martin Knapp

- 135. Planning and providing mental health services for a community 1372
 Tom Burns and Tony Kendrick
- 136. Health economic analysis of service provision 1384 Judit Simon
- 137. Organization of psychiatric services for general hospital departments: proactive and preventive interventions in psychiatry 1392 William H. Sledge and Julianne Dorset
- 138. Refugees and populations exposed to mass conflict 1401 Mina Fazel, Susan Rees, and Derrick Silove

SECTION 24

Forensic psychiatry

- 139. Associations between psychiatric disorder and offending 1415Seena Fazel and Mark Toynbee
- 140. Developmental approach to understanding the needs of young people in contact with the criminal justice system 1423 Sue Bailey and Prathiba Chitsabesan
- 141. Child molesters and other sexual offenders 1433 Stephen J. Hucker
- 142. Stalking and querulous behaviour 1442 Rosemary Purcell and Paul E. Mullen
- 143. Domestic violence and abuse and mental health 1451 Louise M. Howard and Deirdre MacManus
- 144. Assessing and managing the risk of violence to others 1461 Alec Buchanan
- 145. The expert witness in the criminal and civil courts 1469 John O'Grady
- 146. Homicide 1478 Matthew Large and Olav Nielssen

Index 1487

Abbreviations

a-MSH	alpha-melanocyte-stimulating hormone
$G \times E$	gene and environment
μg	microgram
AA	arachidonic acid
AAO	age at onset
AAS	ascending arousal system
AASM	American Academy of Sleep Medicine
ABA	applied behavioural analysis; activity-based anorexia
Abeta	amyloid beta
AC	adenylyl cyclase
ACC	anterior cingulate cortex
ACE	angiotensin-converting enzyme; adverse childhood
	experience
ACE(R)	Addenbrooke Cognitive Examination (Revised)
aCGH	array-comparative genomic hybridization
ACh	acetylcholine
ACMG	American College of Medical Genetics and
	Genomics
ACQ	Agoraphobia Cognition Questionnaire
ACT	acceptance and commitment therapy; assertive
	community treatment
ACTH	adrenocorticotrophic hormone
AD	axial diffusivity; Alzheimer's disease; Alzheimer's
	dementia; adjustment disorder
ADAMHA	US Alcohol, Drug Abuse, and Mental Health
	Administration
ADAPT	Adaption and Development After Persecution and
	Trauma (model)
ADAS-cog	Alzheimer's Disease Assessment Scale-cognitive
	subscale
ADD	attention deficit disorder
ADDUCE	Attention Deficit Hyperactivity Disorder Drugs Use
	Chronic Effects
ADH	alcohol dehydrogenase; antidiuretic hormone
ADHD	attention-deficit/hyperactivity disorder
ADP	adenosine diphosphate
A&E	accident and emergency
aFTLD-U	atypical fronto-temporal lobar degeneration with
	ubiquitinated inclusions
AGD	argyrophilic grain disease
AgRP	agouti-related protein
AHI	apnoea–hypopnea index
aHR	adjusted hazard ratio
AICD	APP intracellular domain
AIDS	acquired immune deficiency syndrome

AIMS	Abnormal Involuntary Movement Scale
AL	allostatic load
ALDH	acetaldehyde dehydrogenase
ALIC	anterior limb of the internal capsule
ALFF	amplitude of low-frequency fluctuations
ALS	amyotrophic lateral sclerosis
AMBIT	adolescent mentalization-based integrative therapy
AMDP	Association for Methodology and Documentation in
	Psychiatry; alternative DSM-5 model for personality
	disorders
AMP	adenosine monophosphate-activated protein;
	amphetamine
AMPA	α-amino-3-hydroxy-5-methyl-4-
	isoxazolepropionic acid
AMTS	Abbreviated Mental Test Score
AN	anorexia nervosa
ANA	antinuclear antibody
ANP	atrial natriuretic peptide
AN-R	restrictive subtype of anorexia nervosa
AO	assertive outreach
aOR	adjusted odds ratio
AOS	apraxia of speech
AP	agoraphobia; area postrema
APA	American Psychiatric Association
APD	antisocial personality disorder
APOE	apolipoprotein E
APP	amyloid β precursor protein
APS	attenuated psychotic symptoms
ARFID	avoidant restrictive food intake disorder
ARID	autosomal recessive forms of intellectual disability
ARMS	at-risk mental state
ARP	aripiprazole
AS	anxiety sensitivity
ASCOT	Adult Social Care Outcome Toolkit
ASD	autism spectrum disorder; acute stress disorder
ASI	Anxiety Sensitivity Index
ASIC	acid-sensing ion channel
ASL	arterial spin labelling
ASN	asenapine
AsPD	antisocial personality disorder
ASPD	antisocial personality disorder
ASPS	advanced sleep phase syndrome
ASWPD	advanced sleep-wake phase disorder
ATC	Anatomical Therapeutic Chemical
ATF6	activating transcription factor 6

ATL	anterior temporal lobe	CADASIL	cerebral autosomal dominant arteriopathy with
ATP	adenosine triphosphate		subcortical infarcts and leukoencephalopathy
ATPD	acute and transient psychotic disorder	CAM	Confusion Assessment Method
ATX	atomoxetine	CAMCOG(R	R) Cambridge Cognitive Assessment (Revised)
AUC	area under the curve	CAMHS	child and adolescent mental health services
AUD	alcohol use disorder	cAMP	cyclic adenosine monophosphate
AUDADIS-IV	Alcohol Use Disorder and Associated	CAPA	Child and Adolescent Psychiatric Assessment
	Disabilities Interview Schedule-IV	CAPP	Comprehensive Assessment of Psychopathic
AVP	vasopressin		Personality Disorder
AvPD	avoidant personality disorder	CART	cocaine- and amphetamine-related transcript
AVPD	avoidant personality disorder	CAS9	CRISPR-associated protein 9
BBB	blood-brain barrier	CAT	cognitive analytic therapy
BBV	blood-borne virus	CATCH-IT	Competent Adulthood Transition with Cognitive
BD	bipolar disorder		Behavioural and Interpersonal Training
BDD	body dysmorphic disorder	CATIE	Clinical Antipsychotic Trial of Intervention
BDI	Beck Depression Inventory		Effectiveness (study)
BDNF	brain-derived neurotrophic factor	CBA	cost-benefit analysis
BDSM	bondage, dominance and submission, sadism, and	CBC	complete blood count
	masochism	CBCL	Child Behavior Problems Checklist
BED	binge eating disorder	CBCM	cognitive behavioural case management
BET	brief eclectic therapy	CBD	cortico-basal degeneration: cannabidiol
BF	basal forebrain	CBF	cerebral blood flow
BI	behavioural inhibition	CBG	cortico-basal ganglia
BIA	budget impact analysis	CBG-GSH	guided self-help cognitive behavioural therapy
BIBD	basophilic inclusion body disease	CBI	classroom-based intervention
BIPS	Brief Intermittent Psychotic Symptoms	CBIT	Comprehensive Behavioral Intervention for Tics
BIT	behavioural intervention team	CBO	community-based organization
BLA	basolateral amyodala	CBS	cortico-basal syndrome
BLIPS	Brief Limited Intermittent Psychotic Symptoms	CBT	cognitive behavioural therapy
BMI	body mass index	CBT-F	enhanced cognitive behavioural treatment
BMP	hone morphogenetic protein	CBTi	cognitive behavioural therapy for incompia
BN	bulimia nervosa	CBT-PD	cognitive behavioural therapy for personality
BNM	biophysical network model	CDITD	disorder
B/NRT	hupropion/nicotine replacement therapy	CC	collaborative care
BOID	blood ovygen level-dependent		cost_consequences analysis
BOTMP	Bruininks_Oseretsky Test of Motor Proficiency	CCK	cholecystokinin
BD I WII	blood pressure	CCK 4	cholecystokinin cholecystokinin tetrapentide
BPD	borderline personality disorder: bipolar disorder	CCI	conventional consultation liaison
BDI	bipolar disorder type I	CCM	collaborative care management
BDII	bipolar disorder type I	CD	cooliac disease
brm	bests per minute	CDC	Center for Disease Control and Prevention
BDDC	Brief Develoatric Dating Scale	CDDC	Clinical Descriptions and Diagnostic Guidelines
	bahavioural and neuchological symptoms of	CDDG	(from ICD 10 Classification of Montal and Pahavioral
DF 3D	demontio		(ITOIII ICD-10 Clussification of Mental and Benavioral Disorderc)
BS	basic symptoms	CEA	Disoluers)
DO	basic symptoms	CEA	cost-enectiveness analysis
DOL	Pahavioural Treatment for Substance Abuse in	CEST	
DISAS	Severe and Devision Mantal Illness	CETA	Common Elements Treatment Approach
by ETD	behavioural variant fronto temporal demontio	CEIR	Consolidated Framework for Implementation
	behavioural-variant nonto-temporal dementia	CLIK	Descereb
	benzodiazonino	CES	chronic fatigue sundrome
	children and adolescents	CCAS	Child Clobal Assassment Scale
$C \propto A$	calcium	CGAS	cinia Giobai Assessment Scale
	carchural annulaid an gionath		Clinical Clobal Improvide of Internet
CAADMO	Comprehensive Assessment of At Disk Martal St.		Chinical Global Impression of Improvement
CAAKMS	Comprehensive Assessment of At-KISK Mental State	COMP	cyclic guanoshie monophosphale
CAD	Chinical Assessment of Confusion	CU	control grey matter volume
CAD	coronary artery disease	СП	congenitai nypotnyroiaism

CHARGE	Cohorts for Heart and Aging Research in Genomic
	Epidemiology
CHAT	Comprehensive Health Assessment Tool
CHMP	Committee for Medicinal Products for Human Use
CHMP2B	charged multivesicular body protein 2b
CHOICE	CHOosing Interventions that are Cost-Effective
	(project)
CHOP	Children's Hospital of Philadelphia
CHR	clinical high-risk
CI	confidence interval
CIDI	Composite International Diagnostic Instrument
CIR	Clutter Image Rating
CID	Creutzfeldt–Jakob disease
CLiPS	Collaborative Longitudinal Personality
OLII U	Disorders Study
CLP	consultation-liaison psychiatry
CLPDS	Collaborative Longitudinal Personality
OH DU	Disorders Study
CLPS	Collaborative Longitudinal Personality Study
CLI 5	continetro
CM	contingency managements crisis management
CM	contingency management, crisis management
CMA	chromosomar microarray analysis; chaperone-
CMAT	Champed autophagy; cost-minimization analysis
CMAI	Changes to the Matrix Council
CMD	common mental disorder
CMHD	common mental health disorder
CMHT	community mental health team
СМР	comprehensive metabolic panel
CMS-R	Comorbidity Survey-Replication
CNGC	cyclic nucleotide-gated channel
CNS	central nervous system
CNV	copy number variant
COG	centre of gravity
COGA	Collaborative Studies on Genetics of Alcoholism
COGEND	Collaborative Genetic Study of Nicotine Dependence
COMT	catechol-O-methyltransferase
CONSORT	Consolidated Standards of Reporting Trial
CONVERGE	China, Oxford, and Virginia Commonwealth
	University Experimental Research on Genetic
	Epidemiology
COPC	chronic overlapping pain condition
C9ORF72	chromosome 9 open reading frame 72
CoSA	Circles of Support and Accountability
COX-2	cyclo-oxygenase-2
СР	choroid plexus
CPA	Care Programme Approach
CPES	Collaborative Psychiatric Epidemiological Studies
CPR	Civil Procedure Rules
CPT	cognitive processing therapy
Cr	creatine
CR	cognitive rehabilitation: conditioned response
CRA	community reinforcement approach
CREP	cAMP response element binding protein
CDE	contraction of the sector
CRF CDE1	control opini-releasing factor 1
CRFI	controurophi-releasing factor 1
	contropro-releasing normone
UK/HI	crisis resolution/nome treatment

CRISPR	clustered regularly interspaced short
	palindromic repeat
CRN	correct related negativity
CRP	C-reactive protein
CrPR	Criminal Procedure Rules
CRSWD	circadian rhythm sleep-wake disorder
CS	conditioned stimulus; compulsive shopping
CSA	child sexual abuse
CSB	compulsive sexual behaviour
CSF	cerebrospinal fluid
CSS	chromosomal substitution strain
CSTC	cortico-striato-thalamo-cortical
СТ	computed tomography
CTD	chronic tic disorder
CTE	chronic traumatic encephalopathy
СТО	community treatment order
CU	callous-unemotional
CUA	cost-utility analysis
CUtLASS	Cost Utility of the Latest Antipsychotic drugs in
	Schizophrenia Study
CVD	cardiovascular disease
CVO	circumventricular organ
CWMV	cerebral white matter volume
CY-BOCS	Children's Yale-Brown Obsessive Compulsive Scale
DA	dopamine
dACC	dorsal anterior cingulate cortex
DACCP	Dundee ADHD Clinical Care Pathway
DAG	diacylglycerol
DAGK	diacylolycerol kinase
DALY	disability-adjusted life year
DAMP	damage-associated molecular pattern
DAPP	Differential Assessment of Personality Pathology
DARI	donamine reuntake inhibitor
DAT	dopamine: dopamine transporter
DAWS	dopamine agonist withdrawal syndrome
DRH	dopamine beta-bydroyylase
DBS	deen brain stimulation
DBT	dialectical behaviour therapy
	developmental co-ordination disorder
DCM	dynamic causal model
	Diagnostic Criteria for Pesearch (from ICD 10
DCK	Classification of Mental and Rehavioral Disorders)
DCS	d cycloserine
	delay discounting
	direct detection assay
	duraction assay
DEV	devtroamphetamine
DEC	dereolatoral profrontal cortax
2 DC	2 deovyrducose
	decombeveeneig agid
	dibudroyumbanylathylana glycal
DIIFG	Dominantly Inharitad Alphaiman Natwork
DIAN	Dominanty interfied Alzheimer Network
	Database of Instruments for Deserves Use
DIKUM	Macaurament
סופ	Diagnostia Interview Caladada
	Diagnostic Interview Schedule
	Diagnostic Interview Schedule for Unildren
DISCI	Distupted in Schizophrenia 1

DLB	dementia with Lewy bodies	ED	elimination disorder; emergency department; eating
DLMO	dim light melatonin onset		disorder; erectile disorder
dlPFC	dorsolateral prefrontal cortex	EDNOS	eating disorder not otherwise specified
DLPFC	dorsolateral prefrontal cortex	EDSP	Early Developmental Stages of Psychopathology
DM	diabetes mellitus		(study)
DMH	dorsomedial nucleus of the hypothalamus	EEG	electroencephalogram
DM-ID	Diagnostic Manual-Intellectual Disabilities	EFFEKTE-E	Entwicklungsförderung in Familien: Eltern- und
DMN	default mode network		Kinder-Training in emotional belasteten Familien
DMT	dimethyltryptamine	EGF	epidermal growth factor
DNA	deoxyribonucleic acid	EHS	essential hypersomnia syndrome
DNIC	diffuse noxious inhibitory control	EI	early intervention
DOMINO	Donepezil and Memantine in Moderate to Severe	EMA	European Medicines Agency; ecological momentary
	Alzheimer's Disease (study)		assessment
DOMS	delayed onset of muscular soreness	EMDR	eye movement desensitization and reprocessing
DOR	delta opioid receptor	EMG	electromyography
DOSS	Delirium Observation Screening Scale	ENCODE	Encyclopedia of DNA Elements
DPD	dependent personality disorder	ENIGMA	Enhancing NeuroImaging Genetics through Meta-
DPMS	descending pain modulatory system		Analysis (Consortium)
DR	dorsal raphe	EOG	electro-oculography
DRD4	dopamine receptor type 4	EOS	endogenous opioid system
DRG	diagnosis-related group	EP	explaining pain
DRN	dorsal raphe nuclei	EPA	eicosapentanoic acid
DRPLA	dentatorubropallidoluysian atrophy	EPAD	European Prevention of Alzheimer's Dementia
DRS-R-98	Delirium Rating Scale-Revised-98		Consortium
DS	dorsal striatum	EPDS	Edinburgh Postnatal Depression scale
DSED	disinhibited social engagement disorder	EPI	echo planar imaging
DSM	Diagnostic and Statistical Manual of Mental Disorders	ePREP	Prevention and Relationship Enhancement
DSM-III	Third revision of the Diagnostic and Statistical		Programme
	Manual of Mental Disorders	EPS	extra-pyramidal side effect
DSM-III-R	DSM-III-Revised	EPSE	extra-pyramidal side effect
DSM-IV-TR	DSM-IV 'Text Revision'	ER	endoplasmic reticulum
DSM-5	5th edition of the Diagnostic and Statistical Manual	ERF	event-related field
	of Mental Disorders	ERK	extracellular regulated kinase
DST	daylight saving times; dexamethasone	ERN	error-related negativity
	suppression test	ERP	event-related potential; exposure and response
DSWPD	delayed sleep–wake phase disorder		prevention
DTC	democratic therapeutic community	ES	effect size
DTI	diffusion tensor imaging	ESDM	Early Start Denver Model
DTS	diffusion tensor spectroscopy	ESR	erythrocyte sedimentation rate
DUB	deubiquitinating enzyme	ESS	Epworth Sleepiness Scale
DUD	drug use disorders	ESSENCE	Early Symptomatic Syndromes Eliciting
DUI	daytime urinary incontinence; duration of untreated		Neurodevelopmental Clinical Examination
	illness	EU	European Union
DUP	duration of untreated psychosis	EUFEST	European First Episode Schizophrenia Trial
DURG	Drug Utilisation Research Group	EULAR	European League Against Rheumatism
DVA	domestic violence and abuse	EUnetHTA	European Network for Health Technology
DWI	diffusion-weighted imaging		Assessment
DXA	dual-energy X-ray absorptiometry	FA	fractional anisotropy
DY-BOCS	Dimensional Yale-Brown Obsessive	FACT	functional assertive community treatment
	Compulsive Scale	fAD	familial Alzheimer's disease
DZ	dizygotic	FASD	fetal alcohol spectrum disorders
EAGG	European ADHD Guideline Group	fcMRI	functional connectivity magnetic resonance imaging
EAS	euthanasia or assisted suicide	FDA	US Food and Drug Administration
EC	enhanced care	FDG	fluorodeoxyglucose
ECA	Epidemiologic Catchment Area (study)	FDOPA	18F-fluorodopa
ECG	electrocardiography	FEP	first-episode psychosis
ECNP	European College of Neuropsychopharmacology	FFI	fatal familial insomnia
ECT	electroconvulsive therapy	FFM	five-factor model of personality
	1 /		± /

FFT	family-focused therapy; functional family therapy
FGA	first-generation antipsychotic
FGCB	Family Group Cognitive-Behavioural
FGF	fibroblast growth factor
FI	faecal incontinence
FINGER	Finnish Geriatric Intervention Study to Prevent
	Cognitive Impairment and Disability (study)
FLAIR	fluid-attenuated inversion recovery
FL-APM	first-line dopamine antagonist medication
FM	fibromyalgia
fMRI	functional magnetic resonance imaging
FMRP	fragile X mental retardation protein
FMT	6-18F-fluoro-l-m-tyrosine
FNSD	functional neurological symptom disorder
FOCUS	Families OverComing Under Stress
FPN	frontal-parietal network
FPR	Family Procedure Rules
FSCD	Family Study of Cocaine Dependence
FSIAD	female sexual interest/arousal disorder
fT	femtotesla
FTD	fronto-temporal dementia
FTDC	International Behavior-variant FTD Criteria
	Consortium
FTE	full-time equivalent
FTI	family therapeutic intervention
FTLD	fronto-temporal lobar degeneration
FTLD-ni	fronto-temporal lobar degeneration without
	inclusions
FTLD-tau	fronto-temporal lobar degeneration with tau-
	positive inclusions
FTLD-UPS	fronto-temporal lobar degeneration with
	immunohistochemistry against proteins of the
	ubiquitin proteosomal system
FUS	fused in sarcoma (protein)
FXS	fragile X syndrome
g	gram; effect size
GA	Gamblers Anonymous
GABA	gamma aminobutyric acid
GAD	generalized anxiety disorder
GAF	Clobal Assessment of Functioning (scale)
CADD	Global Assessment of Functioning (scale)
GAPD	General Assessment of Personality Disorder
GAPD GAR	General Assessment of Personality Disorder Global Attentiveness Rating
GAPD GAR GBA	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase
GAPD GAR GBA GBD	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies)
GAPD GAR GBA GBD GBL	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone
GAPD GAR GBA GBD GBL GCAN	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa
GAPD GAR GBA GBD GBL GCAN GCase	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β-glucocerebrosidase 1
GAPD GAR GBA GBD GBL GCAN GCase GCMS	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β-glucocerebrosidase 1 gas chromatography-mass spectrometry
GAPD GAR GBA GBD GBL GCAN GCase GCMS GCS	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β-glucocerebrosidase 1 gas chromatography-mass spectrometry Glasgow Coma Scale
GAPD GAR GBA GBD GBL GCAN GCase GCMS GCS GCT	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β -glucocerebrosidase 1 gas chromatography-mass spectrometry Glasgow Coma Scale gender-confirming treatment
GAPD GAR GBA GBD GBL GCAN GCase GCMS GCS GCT GCTA	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β -glucocerebrosidase 1 gas chromatography-mass spectrometry Glasgow Coma Scale gender-confirming treatment genome-wide complex trait analysis
GAPD GAR GBA GBD GBL GCAN GCase GCMS GCS GCT GCTA GD	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β -glucocerebrosidase 1 gas chromatography–mass spectrometry Glasgow Coma Scale gender-confirming treatment genome-wide complex trait analysis gender dysphoria; gambling disorder
GAPD GAR GBA GBD GBL GCAN GCase GCMS GCS GCT GCTA GD GDNF	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β -glucocerebrosidase 1 gas chromatography-mass spectrometry Glasgow Coma Scale gender-confirming treatment genome-wide complex trait analysis gender dysphoria; gambling disorder glial cell-derived neurotrophic factor
GAPD GAR GBA GBD GBL GCAN GCase GCMS GCS GCT GCTA GD GDNF GDP	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β -glucocerebrosidase 1 gas chromatography-mass spectrometry Glasgow Coma Scale gender-confirming treatment genome-wide complex trait analysis gender dysphoria; gambling disorder glial cell-derived neurotrophic factor guanosine diphosphate; gross domestic product
GAPD GAR GBA GBD GBL GCAN GCase GCMS GCS GCT GCTA GD GDNF GDP GET	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β -glucocerebrosidase 1 gas chromatography-mass spectrometry Glasgow Coma Scale gender-confirming treatment genome-wide complex trait analysis gender dysphoria; gambling disorder glial cell-derived neurotrophic factor guanosine diphosphate; gross domestic product graded exercise therapy
GAPD GAR GBA GBD GBL GCAN GCASE GCMS GCS GCT GCTA GD GDNF GDP GET GF	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β -glucocerebrosidase 1 gas chromatography–mass spectrometry Glasgow Coma Scale gender-confirming treatment genome-wide complex trait analysis gender dysphoria; gambling disorder glial cell-derived neurotrophic factor guanosine diphosphate; gross domestic product graded exercise therapy germ-free
GAPD GAR GBA GBD GBL GCAN GCase GCMS GCS GCT GCTA GD GDNF GDP GET GF GHB	General Assessment of Personality Disorder Global Attentiveness Rating glucocerebrosidase Global Burden of Disease (studies) gamma butyrolactone Genetic Consortium for Anorexia Nervosa β -glucocerebrosidase 1 gas chromatography–mass spectrometry Glasgow Coma Scale gender-confirming treatment genome-wide complex trait analysis gender dysphoria; gambling disorder glial cell-derived neurotrophic factor guanosine diphosphate; gross domestic product graded exercise therapy germ-free gamma hydroxybutyrate

GI	gyrification index; gender incongruence	
GID	gender identity disorder	
GIDC	gender identity disorder of childhood	
GIDYO-AA	Gender Identity/Gender Dysphoria Questionnaire	
	for Adolescents and Adults	
GIP	G protein-coupled receptor-interacting protein	
GI	gap junction	
GLM	general linear model	
GM	grev matter	
GMV	grev matter volume	
GnIH	gonadotrophin-inhibitory hormone	
GnRH	gonadotrophin-releasing hormone	
CnPHa	gonadotrophin releasing hormone analogue	
CO	Cana Ontology	
COPD	gestro occophagoal reflux disease	
GORD	gastro-desopriagear renux disease	
GPCK	G protein-coupled receptor	
GPPPD	genito-peivic pain/penetration disorder	
GR	glucocorticoid receptor	
GRADE	Grading of Recommendations, Assessment,	
	Development, and Evaluations	
GRDS	genetic risk and deterioration syndrome	
GRE	gradient echo	
GREML	genomic-relatedness-matrix restricted maximum likelihood	
GRK	G protein-coupled receptor kinase	
GRML	genomic relationship-matrix restricted maximum	
	likelihood	
GRN	granulin	
GRS	genetic risk scoring	
GSK-3β	glycogen synthase kinase-3β	
GSS	Gerstmann-Sträussler syndrome	
GTP	guanosine triphosphate	
GWA	genome-wide association	
GWAS	genome-wide association studies	
GWES	genome-wide exome sequencing	
HAI	health care-associated infection	
HAROLD	Hemispheric Asymmetry Reduction in Old Adults	
	(model)	
HbA1c	glycated haemoglobin	
HBV	hepatitis B virus	
HCR-20	Historical, Clinical Risk Management-20	
HCV	hepatitis C virus	
HD	Huntington's disease; hoarding disorder	
HDAC	histone deacetylation	
HD-D	Hoarding Disorder Dimensional Scale	
HDE	humanitarian device exemption	
HDL	high-density lipoprotein	
HDRS	Hamilton Depression Rating Scale	
HF	high frequency	
HFS	high-frequency stimulation	
5-HIAA	5-hydroxyindoleacetic acid	
HIC	high-income country	
HiTOP	Hierarchical Taxonomy of Psychopathology	
HIV	human immunodeficiency virus	
HKD	hyperkinetic disorder	
HLA	human leucocyte antigen	
HoNOS	Health of the Nation Outcome Scales	
HOT	hyperbaric oxygen therapy	

HPA	hypothalamus-pituitary-adrenal
HPD	histrionic personality disorder
HPLC	high-performance liquid chromatography
НРРП	hallucingen persisting percentual disorder
	human protoin reference detabase
	human protein reference database
	heart rate; hazaru ratio
HR-QoL	health-related quality of life
HRS-I	Hoarding Rating Scale-Interview
HRS-SR	Hoarding Rating Scale-Self Report
HRT	habit reversal training; hormone replacement
	therapy
HSP90	heat shock protein 90
5-HT	5-hydroxytryptamine
HTA	health technology appraisal; health technology
	assessment
HTAi	Health Technology Assessment international
HTT	huntingtin
HVA	homovanillic acid
HYE	health year equivalent
Hz	hertz
IADL	instrumental activity of daily living
IAPT	Improving Access to Psychological Therapies
IBD	inflammatory bowel disease
IBMPFD	inclusion body myopathy with Paget's disease of
	hone and fronto-temporal dementia
IBS	irritable bowel syndrome
ICA	independent component analysis
ICA	International Children's Continence Society
ICCS	international Children's Continence Society
ICD	Impulse-control disorder
ICD	International Classification of Diseases
ICD-10	International Classification of Diseases, tenth
100 11	revision
ICD-11	International Classification of Diseases, eleventh
	revision
ICECAP	ICEpop CAPability
ICER	incremental cost-effectiveness ratio
ICF	International Classification of Functioning and
	Disability
ICOCS	International College of Obsessive-Compulsive
	Spectrum Disorders
ICSD-3	International Classification of Sleep Disorder, third
	edition
ICU	intensive care unit
ID	intellectual disabilities; insomnia disorder
IDD	intellectual developmental disorder
IDO	indoleamine 2,3-dioxygenase
IED	intermittent explosive disorder
IFC	inferior frontal cortex
IFG	inferior frontal gyrus
IFN	interferon
IGF	insulin-like growth factor
IGF-1	insulin-like growth factor 1
IoG	immunoglobulin G
IHSC	interhemispheric spectral coherence
II	interleukin
IL_1	interleukin 2
IL-2 II 6	interleukin 2
11-0	IIIICIICUKIII U

IM	intramuscular
ImPACT	Immediate Post-Concussion Assessment and
	Cognitive Testing
IMPase	inositol-1-monophosphatase
IMPC	International Mouse Phenotyping Consortium
ΙΝΑΗΤΑ	International Network of Agencies for Health
11111111	Technology Assessment
INN	international non-proprietary name
iNOS	inducible nitric oxide synthase
IOCDF-GC	International OCD Foundation Genetics
	Collaborative
IOM	Institute of Medicine
IP ₃	inositol 1,4,5-triphosphate
IPDE	International Personality Disorders Examination
IPL	inferior parietal lobe
iPSC	induced pluripotent stem cell
IPSRT	interpersonal and social rhythm therapy
IPT	interpersonal psychotherapy
IPV	intimate partner violence
IQ	intelligence quotient
IR	immediate release; insulin resistance
IRE1	inositol-requiring enzyme 1
IRGC	intermediate radial glia cell
IRLSS	International Restless Legs Syndrome Study Group
IRT	item response theory; individual resilience training;
	imagery relief therapy
ISBD	International Society for Bipolar Disorders
ISC	International Schizophrenia Consortium
ISoS	International Study of Schizophrenia
isvz	inner subventricular zone
ISWRD	irregular sleep-wake rhythm disorder
ITP	inferior thalamic peduncle
IUPHAR	International Union of Basic and Clinical
	Pharmacology
IVF	<i>in vitro</i> fertilization
JASPER	Joint Attention, Symbolic Play, Engagement and
	Regulation
K	kelvin
K ⁺	potassium
kb	kilobase
kDa	kilodalton
KEGG	Kyoto Encyclopaedia of Genes and Genomes
KFS	Keeping Families Strong
kg	kilogram
KO	knockoul
KUK V SADS	Kappa opioid receptor
K-SADS	for School Age Children
т	litro
	long acting injected
LAI	Lewy body
	Lewy body Lewy body dementia
IC	locus caeruleus
LD	linkage disequilibrium: learning disability
L/D	light/dark
LDL	low-density lipoprotein
L-dopa	levodopa
LDX	lisdexamfetamine

LF	low frequency
LFP	local field potential
LGD	likely gene disrupting
LGE	lateral ganglionic eminence
<i>l</i> GI	local gyrification index
LH	lateral hypothalamic
LHA	lateral hypothalamus
LHb	lateral habenula
LHRH	luteinizing hormone-releasing hormone
LMIC	low- and middle-income country
lncRNA	long non-coding ribonucleic acid
LOC	loss of consciousness
LOD	logarithm of the odds
LoF	loss of function
LOS	length of stav
LPFS	Level of Personality Functioning Scale
LPS	lipopolysaccharide
LSD	lysergic acid diethylamide
LTC	long-term care
ITD	long-term depression
LTG	lamotrigine
	long_term potentiation
	lurasidone
LUK	lower uringry tract symptoms
MARC	Movement According to Pattery for Children
MADES	Mortgomery Åsherg Depression Pating Scale
MADRS	montgoinery-Asberg Depression Rating Scale
MAN	Mandalay Model of Anoravia Nervoes Treatment
MANIKA	for A dulta
MAO	
MAO	monoamine oxidase
MAOA	monoamine oxidase A
MAOA-H	monoamine oxidase-nign (allele)
MAOA-L	monoamine oxidase-low (allele)
MAOI	monoamine oxidase inhibitor
MAP	mitogen-activated protein; microtubule-associated
	protein
MAPK	mitogen-activated protein kinase
MAPS	Multidisciplinary Association for Psychedelic Studies
	(project)
MAPT	microtubule-associated protein tau
MARAC	multi-agency risk assessment conference
MAYSI-2	Massachusetts Youth Screening
	Instrument-Version 2
MBCT	mindfulness-based cognitive therapy
MBP	myelin basic protein
MBSR	mindfulness-based stress reduction
MBT	mentalization-based treatment
MBT-A	mentalization-based treatment for adolescents
MBU	mother and baby unit
MCA	middle cerebral artery
MCC	mid cingulate cortex
MCDA	multi-criteria decision analysis
MC4R	melanocortin-4 receptor
MCH	melatonin-concentrating hormone
MCI	mild cognitive impairment
MCMI-III	Millon Clinical Multiaxial Inventory-III
MCTQ	Munich ChronoType Questionnaire
MD	mean diffusivity

MDA	methylenedioxyamphetamine
MDAS	Memorial Delirium Assessment Scale
MDD	major depressive disorder
MDI	manic depressive illness
MDMA	2.4 methylonediovymethamphetamine
	MDMA sesisted worse otherware
MDMA-AP	MDMA-assisted psychotherapy
MDI	mode deactivation therapy
ME	myalgic encephalomyelitis
M/EEG	MEG and EEG
MEG	magnetoencephalography
MET	motivational enhancement therapy
MFB	medial forebrain bundle
MFC	medial frontal cortical (regions)
MFG	medial frontal gyrus
MGB	microbiota-gut-brain (axis)
MGD	Mouse Genome Database
MGE	medial ganglionic eminence
mGluR	metabotropic glutamatergic receptor
MGMH	Movement for Global Mental Health
MHC	major histocompatibility complex
mhGAP	Mental Health Gap Action Programme
MHIN	Mental Health Innovation Network
MHP	mental health professional
MHPG	3-methoxy-4-hydroxyphenylglycol
MHRA	Medicines and Healthcare products
	Regulatory Agency
MHS	mental health services
MI	motivational interviewing
MIRC	¹²³ I metajodobenzulguanidine
MID	monetary incentive delay
MIDS	multiplicative delay
miPNA	myo-mostor-5-phosphate synthase
mm	millimetre
MMN	mismatch negativity
MMPI	Minnesota Multinhasic Personality Inventory
MMSE	Mini-Mental State Examination
MND	motor neuron disease: Malingered Neurocognitive
MIND	Dysfunction
ΜΟΔ	mechanism of action
MoCA	Montreal Cognitive Assessment
mOEC	medial orbitofrontal cortex
MOP	mu opioid receptor
mDEC	medial prefrontal cortex
MDH	methylphenidate
MDD+	1-methyl_1_nhenylpyridinium
MDTD	mathyl 4 phanyl 1.2.2.6 tatrahydronyriding
MD	mineralocorticoid recentor: magnetic resonance
mDASS	militatocorricolu receptor, magnetic resonance
MDE	modifield rick factor
MDI	modifiable fisk factor
MRI	magnetic resonance imaging
MRNA	messenger ribonucieic acid
MCA	magnetic resonance spectroscopy
MSA	multiple system atrophy
MSAD	NicLean Study of Adult Development
MSF	mid-sieep on free day
MSH	meianocyte-stimulating hormone
MSI-2	Multiphasic Sex Inventory-2

MSLT	multiple sleep latency test	NIRE	Not Just Right Experience
MSD	magnetically shielded room	NK 1	neurokinin 1
MST	multi evetemic therepy	NMDA	N mathyl D concretato
MOM	multi-systemic merapy		N-methyl-D-aspartate
IVIS VV	mid-sleep on workdays	NMDAR	N-methyl-D-aspartate receptor
MI	magnetization transfer	NMR	nuclear magnetic resonance
mTBI	mild traumatic brain injury	NMS	neuroleptic malignant syndrome
mtDNA	mitochondrial DNA	NND	number needed to detain
MTFC	multi-dimensional treatment foster care	NNI	NMDAR-neuromodulator interaction
mTOR	mammalian target of rapamycin	NNP	number needed to prevent
MTR	magnetization transfer ratio	NNT	number needed to treat
MVPC	multivariate pattern classification	NO	nitric oxide
MZ	monozygotic	NOS	not otherwise specified; nitric oxide synthase
Na^+	sodium	NPC	neural progenitor cell
NA	noradrenaline	NPD	narcissistic personality disorder
NAA	N-acetyl aspartate	NPI	neuropsychiatric inventory
NAC	nucleus accumbens: <i>N</i> -acetvlcvsteine	NPS	novel psychoactive substance: neuropeptide S
NAcc	nucleus accumbens	NPY	neuropeptide Y
nAChR	nicotinic acetylcholine receptor	NREM	non-rapid eve movement
NAM	negative allosteric modulation	NRI	selective noradrenergic reuptake inhibitor
NAMHC	National Advisory Mental Health Council	NRT	nicotine replacement therapy
NaSSA	noradrenergic and specific serotonergic	NSAID	non-steroidal anti-inflammatory drug
1100001	antidenressant	NSS	non-steroidal anti-innaninatory drug
Natural 2	third National Surveys of Served Attitudes and	NGGI	non qui si del solt inium
Ivatsai-5	Lifestales	NSSI NSSID	non-suicidal self-injury
ND		NSSID	non-suicidal sell-injury disorder
NB	net benefit	N24SWD	non-24-hour sleep-wake disorder
NDN	Neuroscience-based Nomenclature	NTD	neurofibrillary tangle dementia
NcAcc	nucleus accumbens	Nu-DESC	Nursing Delirium Screening Scale
NCD	neurocognitive disorder	NVAWS	National Violence Against Women Survey
NCDLB	neurocognitive disorder with Lewy bodies	OAB	overactive bladder
NCGS	non-coeliac gluten sensitivity	OC	obsessive-compulsive
ncRNA	non-coding RNA	OCD	obsessive-compulsive disorder
NCS	National Comorbidity Survey	OCDUS	Obsessive Compulsive Drug Use Scale
NCS-A	National Comorbidity Survey Adolescent	OCGAS	OCD Collaborative Genetic Association Study
	Supplement	OCPD	obsessive-compulsive personality disorder
NCS-R	National Comorbidity Survey-Replication	OCRD	obsessive-compulsive and related disorder
NDA	National Institute of Mental Health Data Archive;	OCSD	obsessive-compulsive spectrum disorder
	new drug approval	ODD	oppositional defiant disorder
NDD	neurodegenerative disease	OECD	Organisation for Economic Co-operation and
NDRI	noradrenaline/dopamine reuptake inhibitor		Development
NE	nocturnal enuresis	OED	other eating disorder
NEAT	non-exercise activity thermogenesis	OFC	orbitofrontal cortex
NES	night eating syndrome	OLZ	olanzapine
NESARC	National Epidemiological Survey on Alcohol and	ONS	Office of National Statistics
11LO/IICO	Related Conditions	OPD	operational psychodynamic diagnostics
NET	noradrenaline (noreninenhrine) transporter	OPM	optically numped magnetometer
IVL I	norative exposure therapy	OPPI	octanentide repeat insertion
NE vP	nuclear factor vP	OP	odda ratio
nr-kD	non fluent verient numeru programius enhacia		obstructive clean annage
IIIVPPA NCE	non-nuent-variant primary progressive aphasia	OSA	obstructive sleep aprioea
NGF		OSE	other stressor event
NGO	non-governmental organization	OSFED	other specified feeding and eating disorders
NGS	next-generation sequencing	051	opiate substitution therapy
NHMRC	National Health and Medical Research Council	OSVZ	outer subventricular zone
NICE	National Institute for Health and Care Excellence	OxCAP-MH	Oxford CAPabilities questionnaire-Mental Health
NIDA	National Institute of Drug Abuse	OXTR	oxytocin receptor
NIFID	neuronal intermediate filament inclusion disease	PA	periaqueductal
NIH	National Institutes of Health	PACAP	pituitary adenylyl cyclase-activating polypeptide
NIMH	National Institute of Mental Health	PACT	Preschool Autism Communication Trial
NIMH-RGR	NIMH Repository and Genomics Resource	PAF	population-attributable fraction

PAG	periaqueductal grey	PM+	Problem Management Plus
PAI	Personality Assessment Inventory	PMA	paramethoxyamphetamine
PAL	paliperidone	PMDD	premenstrual dysphoric disorder
PAM	positive allosteric inhibitor; positive allosteric	PMMA	paramethoxymethamphetamine
	modulation	PND	postnatal depression
PAMP	pathogen-associated molecular pattern	PoA	preoptic area
PANDAS	Paediatric autoimmune neuropsychiatric disorder	POMC	pro-opiomelanocortin
	associated with streptococcal infections	PP	post-partum (puerperal) psychosis
PANESS	Physical and Neurological Examination for	PPAR	peroxisome proliferator-activated receptor
	Soft Signs	PPD	paranoid personality disorder
PaPA	Perceptions and Practicalities Approach	P&PD	DSM-5 Personality and Personality Disorders
PAR	nonulation-attributable risk	IGID	Work Group
PATS	Preschoolers with ADHD Treatment Study	PPG	penile plethysmography
PRMC	peripheral blood monopuclear cell	DDI	protein_protein interaction
DRD	Parent-Based Prevention	DDV	positive predictive value
	paraistant complex bareauement disorder	nPCC	positive predictive value
PCDD	persistent complex beleavement disorder	PROC	Drogramma for Improving Montal Health Care
PCC	posterior cingulate cortex	PRIME	(studee)
PCL D	paracentral lobule	DDOM	(study)
PCL-R	Psychopathy Checklist Revised	PROM	patient-reported outcome measure
PCL-YV	Psychopathy Checklist: Youth Version	PrP	prion protein; Penn Resilience Program
PCP	primary care physician	PrP ^C	cellular prion protein
РСРА	para-chlorophenylalanine	PrP ^{se}	scrapie form of prion protein
PCS	post-concussion syndrome	PRS	polygenic risk scoring
PD	panic disorder; proton density; Parkinson's disease;	PSA	prostate-specific antigen
	personality disorder	PSD	post-synaptic density; post-stroke depression
PDAQ	Penn Daily Activities Questionnaire	PSE	Present State Examination
PD-CFRS	PD-Cognitive Function Rating Scale	PSG	polysomnography
PDD	pervasive developmental disorder; Parkinson's	PSP	progressive supranuclear palsy
	disease dementia	PSQI	Pittsburgh Sleep Quality Index
PDE	phosphodiesterase	PST	problem-solving therapy
PDE-5	phosphodiesterase type 5	PTA	post-traumatic amnesia; Positive Thoughts and
PD-MCI	Parkinson's disease with mild cognitive impairment		Action Program
PD-TS	personality disorder-trait specified	p-tau	phosphorylated tau
PE	prolonged exposure; premature ejaculation	PTE	potentially traumatic event
PEG	polvethyleneglycol	PTSD	post-traumatic stress disorder
PEPS	psychoeducation with problem-solving	PU	premonitory urge
PERK	protein kinase RNA-like endoplasmic	PUFA	polyunsaturated fatty acid
1 2141	reticulum kinase	PVE	partial volume effect
PFT	positron emission tomography	PVFS	post-viral fatigue syndrome
PET-MR	positron emission tomography_magnetic resonance	PVN	paraventricular hypothalamic nucleus
	peychological first aid	OAIV	quality adjusted life year
PFA	profrontal cortex	QALI	quality-adjusted me year
	prenontal contex	QOF	quality and outcomes framework
PGAD	Pershisteria Constitution	QUL	quality of life
PGC TD	Psychiatric Genetics Consortium	QIL	quantitative trait locus
PGC-ED	Eating Disorders working Group of the Psychiatric	QIP	quetiapine
DOD	Genomics Consortium	rACC	rostral anterior cingulate cortex
PGE_2	prostaglandin E ₂	RAD	reactive attachment disorder; Reynolds Adolescent
PGRS	polygenic risk score		Depression
PI	phosphoinositide/phosphoinositol; polarity index	RAID	Rapid Assessment, Interface, and Discharge (model)
PiB	Pittsburgh compound B	RANZP	Royal Australian and New Zealand College of
PIGD	postural instability gait disorder		Psychiatrists
PIP_2	phosphotidyl inositol 4,5-biphosphate	RAP	Resourceful Adolescent Program
piRNA	piwi-interacting ribonucleic acid	RAR	retinoic acid receptor
PKA	protein kinase A	RBANS	Repeatable Battery for the Assessment of
РКС	protein kinase C		Neuropsychological Status
PKU	phenylketonuria	RBD	rapid eye movement sleep behaviour disorder
PLC	phospholipase C	rCBF	regional cerebral blood flow
PLE	psychotic-like experience	rCMRglu	regional cerebral metabolic rate for glucose
		0	-

RCT	randomized controlled trial	SCZ	schizophrenia
RCV	rare coding variant	SD	sleep deprivation
RD	radial diffusivity	SDQ	Strengths and Difficulties Questionnaire
RDC	Research Diagnostic Criteria	SDS	standard deviation score
RDoC	Research Domain Criteria	SEID	systemic exertion intolerance disease
RdoCdb	Research Domain Criteria Database	SERCA	sarco(endo)plasmic reticulum calcium ATPase
REE	resting energy expenditure	SERT	serotonin; serotonin transporter
REM	rapid eye movement	SES	socio-economic status
REMS	risk evaluation and mitigation strategies	SF-36	Short Form Health Survey 36
RESH	Repeated Episodes of Self-Harm (score)	SFO	subfornical organ
REST	RE1-silencing transcription factor	SFT	schema-focused therapy
RF	radiofrequency	SG	somatosensory gating
RFLP	restriction fragment length polymorphism	SGA	second-generation antipsychotic
RGS	G-protein signalling protein	sgACC	subgenual anterior cingulate cortex
RHT	retinohypothalamic tract	sgp130	soluble glycoprotein 130
RLE	real life experience	sgRNA	single-guide ribonucleic acid
RLS	restless legs syndrome	SHA	System of Health Accounts
RNA	ribonucleic acid	SHORT IO-C	CODE short form of the Informant Questionnaire on
RNP	ribonucleoprotein	011011110	Cognitive Decline in the Elderly
ROADMAP	Real world Outcomes across the Alzheimer's Disease	SHO	Clarke Sex History Questionnaire
Rollbinn	spectrum for better care: Multi-modal data Access	SIADH	syndrome of inappropriate antidiuretic hormone
	Platform	SIDP-IV	Structured Interview for DSM-IV Personality
ROI	region of interest		Disorders
ROM	routine outcome measure	SIH	stress-induced hyperthermia
ROM	reactive ovvgen species	SIHD	Structured Interview for Hoarding Disorder
ROSE	Reach Out Stand Strong Essentials for new mothers	SIPP	Severity Indices of Personality Problems
ROOL	(programme)	SIPS	Structured Interview for Prodromal Syndromes
RDS	risk profile scoring	511 5	Structured Interview for Psychosis-Risk Syndromes,
DD	relative rick	SI D	Swing Inventory Deviced
DDBI	restricted and repetitive behaviours and interests	SI-K	short interfering ribopucleic acid
DDT	repid response teem	SIRINA	strong in culation training
	rumination sundrome	SIC	solute corrier
rofMDI	recting state functional magnetic reconnect imaging	IMER	superelateral branch of the modial forebrain bundle
DSN	resting state numeriorities in agriculture in agring	SIMIFD	superorateral branch of the medial forebrand buildie
TMC	resulting state fietwork	SMA	standardized mean difference
PT OulC	repetitive transcrama magnetic sumulation	SMD	
RI-QuiC	real-time quaking-induced conversion	SMG	
	Postral ventromedial medulia	SIVII SMIT 1	severe mental liness
RIGD	Roux-Ell-1 gastric bypass	SMITT	socium/ <i>myo</i> -mositor transporter 1
SAD	sporadic Alzneimer's disease	SMOC	second messenger-operated channel
SAD	social anxiety disorder; seasonal affective disorder	SMK	standard mortality ratio; standardized mortality rate
SANS	Scale for the Assessment of Negative Symptoms	SN	substantia nigra
SAPS	Scale for the Assessment of Positive Symptoms	SNAP	Swanson, Noian, and Peinam (scale); Schedule for
SAPS-PD	Scale for Assessment of Positive Symptoms in	CNID	Nonadaptive and Adaptive Personality
CADI	Parkinsons Disease	SNP	single-nucleotide polymorphism
SARI	serotonin antagonist and reuptake inhibitor	SNR	signal-to-noise ratio
SAVRY	Structured Assessment of Violence Risk in Youth	SNRI	serotonin/noradrenaline reuptake inhibitor
SCAN	Schedule for Clinical Assessment in Neuropsychiatry	SNV	single nucleotide variant
SCC	subcallosal cingulate cortex	SOC	store-operated channel
SCD	social (pragmatic) communication disorder	SOC-7	Standards of Care for the Health of Transsexual,
SCFA	short-chain fatty acid		Transgender, and Gender-Non-conforming People,
SCID-II	Structured Clinical Interview for DSM-IV Axis II		Version 7
	personality disorders	SOD	superoxide dismutase
sCJD	sporadic Creuztfeldt–Jakob disease	SOFAS	Social and Occupational Functioning
SCL-90	Symptom Checklist-90		Assessment Scale
SCM	structured clinical management	SORAG	Sex Offender Risk Appraisal Guide
SCN	suprachiasmatic nucleus	SOREMP	sleep-onset REM period
SCO	subcommissural organ	SP	specific phobia; subplate (zone)
SCRD	sleep and circadian rhythm disruption	SPD	schizotypal personality disorder

SPECT	single-photon emission computed tomography
SPZ	subparaventricular zone
SQUID	superconducting quantum interference device
SRAI	structured risk assessment instrument
SRI	serotonin reuptake inhibitor
SRS	sex reassignment surgery
SRT	sleep restriction therapy
SSCM	specialist supportive clinical management
SSRI	selective serotonin reuptake inhibitor
STAT3	signal transducer and activator of transcription 3
STEP-BD	Systematic Treatment Enhancement Program for
	Bipolar Disorder
STEPPS	Systems Training for Emotional Predictability and
	Problem Solving
STL	superior temporal lobe
STN	subthalamic nucleus
StPD	schizotypal personality disorder
STPD	schizotypal personality disorder
STPP	short-term psychodynamic psychotherapy
SUD	substance use disorder
SUVr	regional standard uptake value
svPPA	semantic-variant primary progressive aphasia
SVT	symptom validity test
SWAN	Strengths and Weaknesses of ADHD-symptoms and
	Normal-behavior (scale)
SWI	susceptibility-weighted imaging
SWS	slow-wave sleep
Т	tesla; testosterone
tACS	transcranial alternating current stimulation
TADS	Treatment for Adolescents with Depression Study
TAP-MS	tandem affinity purification and mass spectrometry
TAU	treatment as usual
TBARS	thiobarbituric acid reactive substances
TBI	traumatic brain injury
TBK1	TANK-binding kinase 1
TBSS	tract-based spatial statistics
TCA	tricarboxylic acid; tricyclic antidepressant
TCI	Temperament and Character Inventory
TD	typically developing; tardive dyskinesia
tDCS	transcranial direct current stimulation
T2DM	type 2 diabetes mellitus
TDP	TAR-DNA binding protein
TDP43	TAR-DNA binding protein 43
tds	three times daily
TEMPS	Temperament Evaluation scale from Memphis, Pisa,
	and San Diego
TENS	transcutaneous electrical nerve stimulation
TFBS	transcription factor binding site
TF-CBT	trauma-focused cognitive behavioural therapy
TFP	transference-focused psychotherapy
TGA	transient global amnesia
TGMD	Test for Gross Motor Development, second edition
Th2	Thelper 2
THC	tetrahydrocannabinol
TIA	transient ischaemic attack
TIPS	Treatment and Intervention in Psychosis Study
1J TUD	tight junction
TLK	IoII-like receptor

TMF	Trzepacz, Meagher, and Franco (research diagnostic criteria)
TMN	tuberomammillary nucleus
TMS	transcranial magnetic stimulation
TNF	tumour necrosis factor
TOR	target of ranamycin
TPD	Tobacco Products Directive
ТРІ	temporo-parietal junction
TR TR	repetition time
TRD	treatment_resistant depression
TRH	thyrotropin-releasing hormone
TRN	thalamic reticular nucleus
TRP	transient recentor potential
TS	Tourette's syndrome
TSC	tuberous sclerosis complex
TSE	12-sten facilitation
TSH	thyroid-stimulating hormone
TSO	total sexual outlet
TSPO	translocator protein
TST	Triar Social Stress Test
1331	total tau
TTFI	transcriptional_translational feedback loop
	uric acid
	urinary drug screen
UGDS	Utrecht Gender Dysphoria Scale
UHR	ultra-high-risk
UHSS	UCLA Hoarding Severity Scale
	uncertainty interval
UK	United Kingdom cHECK 1-411
UN	United Nations
	Unified Protocol for Transdiagnostic Transment of
0r	Emotional Disorders
נופנו	uniparental disomy
UPR	unfolded protein response
UPS	unspecified prodromal symptoms
US	unconditioned stimulus: United States
USD	United States dollar
USL-model	Universal Selected and Indicated preventive model
UVNTR	unstream variable number of tandem repeats
VaD	vascular dementia
VacD	vascular dementia
VBM	vased morphometry
VCFS	velo-cardio-facial syndrome
VCI	vascular cognitive impairment
vCID	variant Creuztfeldt–Jakob disease
VCP	valosin-containing protein
VC/VS	ventral capsule/ventral striatum
VEGE	vascular endothelial growth factor
VIAAT	vesicular inhibitory amino acid transporter
VIP	vasoactive intestinal pentide
VLPO	ventrolateral preoptic
VMAT2	vesicular monoamine transporter-?
VMHC	voxel-mirrored homotopic connectivity
vmPFC	ventromedial prefrontal cortex
VNS	vagal nerve stimulation
VNTR	variable numbers of tandem repeat
VNUT	vesicular nucleotide transporter
VPA	valproate
* * * * *	

VPAG	ventral periaqueductal grey	WM	white matter
VR	virtual reality	WMH	World Mental Health; white matter hyperintensity
VRAG	Violence Risk Appraisal Guide	WPA	World Psychiatric Association
VRAG-R	Violence Risk Appraisal Guide-Revised	WTCCC3	Wellcome Trust Case-Control Consortium 3
VRET	virtual reality exposure therapy	XMRV	xenotropic murine leukaemia virus-related virus
VS/NcAcc	ventral striatum/nucleus accumbens	Y-BOCS	Yale-Brown Obsessive Compulsive Scale
VTA	ventral tegmental area	YFAS	Yale Food Addiction Scale
WASO	wake after sleep onset	Y2H	Yeast 2 Hybrid
WCST	Wisconsin Card Sorting Task	YLD	year of life lived with disability
WFSBP	World Federation of Societies of Biological	YLL	year of life lost
	Psychiatry	YSR	Youth Self-Report
WHO	World Health Organization	ZIP	ziprasidone
WHO-DAS	World Health Organization Disability Assessment		-
	Schedule		

Contributors

- Dag Aarsland, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Mental Health of Older Adults and Dementia Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
- Kwangmi Ahn, Child Psychiatry Branch, NIMH, Bethesda, MD, USA
- Renato D. Alarcón, Mayo Clinic College of Medicine, Rochester, MN, USA; Cayetano Heredia University, Lima, Peru
- Kirstie N. Anderson, Institute of Neuroscience, Newcastle University, UK; Regional Sleep Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
- Erik M. Andersson, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Nancy C. Andreasen, Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Roberto Andreatini, Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
- Jochen Antel, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Essen-Duisburg, Essen, Germany
- Filip K. Arnberg, National Centre for Disaster Psychiatry, Department of Neuroscience, Psychiatry, Uppsala, Sweden; Stress Research Institute, Stockholm University, Sweden
- Nerys M. Astbury, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- Kammarauche Asuzu, Department of Psychiatry and Behavioral Sciences, Duke University Health System, Durham, NC, USA
- José L. Ayuso-Mateos, Department of Psychiatry, Faculty of Medicine, Autonomous University of Madrid, La Princesa University Hospital, CIBERSAM, Spain
- Fahd Baig, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Sue Bailey, Chair of Centre for Mental Health, London, UK
- David S. Baldwin, Department of Psychiatry, University of Southampton, Southampton, UK
- John Bancroft, Oxford, UK

- Judy Bass, Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Matthew L. Baum, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- Katja Beesdo-Baum, Behavioral Epidemiology, Institute of Clinical Psychology and Psychotherapy, Technical University Dresden, Dresden, Germany
- Dörte Bemme, Department of Anthropology, University of North Carolina at Chapel Hill, USA
- Oded Ben-Arush, Israeli Center for the Treatment of Obsessive-Compulsive Related Disorders, Mesilat Zion, Israel
- Chantal Berna, Pain Center, Division of Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
- Laura A. Berner, UCSD Eating Disorders Center for Treatment and Research, San Diego, CA, USA
- Michael J. Berridge, Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, UK
- Ravi S. Bhat, Rural Health Centre, University of Melbourne, Melbourne, VIC, Australia
- Donald W. Black, Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- William V. Bobo, Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Emre Bora, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health; Carlton South, VIC, Australia; DokuzEylül University, Faculty of Medicine, Department of Psychiatry, Izmir, Turkey
- Daniel W. Bradford, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Maria Bragesjö, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- **Courtney Breen**, National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
- Gerome Breen, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK

- Michael Browning, Department of Psychiatry, Warneford Hospital, Oxford, UK
- Alec Buchanan, Department of Psychiatry, Yale School of Medicine, Division of Law and Psychiatry, New Haven, CT, USA
- Noel J. Buckley, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Jan K. Buitelaar, Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Cynthia M. Bulik, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Eric Burguière, ICM Brain and Spine Institute, Pitié-Salpêtrière Hospital, Paris, France
- Tom Burns, University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, UK
- Joanne A. Byars, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, TIRR Memorial Hermann, Houston, TX, USA
- Lior Carmi, Post Trauma Center, Chaim Sheba Medical Center, and Tel Aviv University, Israel
- Sara Carucci, Child and Adolescent Neuropsychiatric Unit, Department of Biomedical Sciences, University of Cagliari & 'G. Brotzu' Hospital Trust, Cagliari, Italy
- Javier R. Caso, Department of Pharmacology, Faculty of Medicine, Complutense University of Madrid; CIBERSAM, Imas12, IUIN, Madrid, Spain
- David J. Castle, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
- Amy Chan, Centre for Behavioural Medicine, Department of Practice and Policy, UCL School of Pharmacy, London, UK
- Prathiba Chitsabesan, Pennine Care NHS Foundation Trust, Manchester, UK; Department of Health Psychology, Manchester Metropolitan University, Manchester, UK
- Helen Christensen, University of New South Wales, Prince of Wales Hospital, Randwick, NSW, Australia
- Grant C. Churchill, Department of Pharmacology, University of Oxford, Oxford, UK

- Eduardo Cinosi, NHS East of England Highly Specialised Service (HSS) for Treatment Resistant OCD/BDD, Obsessive Compulsive and Related Spectrum Disorders and Applied Neuroscience Department, Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Hatfield, UK
- Andrea Cipriani, Department of Psychiatry, University of Oxford, Warneford Hospital; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
- C. Robert Cloninger, Center for Psychobiology of Personality, Washington University School of Medicine, St. Louis, MO, USA
- Michael J. Coleman, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- John Collinge, National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
- Sally-Ann Cooper, Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow, UK
- Philip J. Cowen, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Andrea Crowell, Department of Psychiatry, Emory University, Atlanta, GA, USA
- Dianne Currier, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Bruce N. Cuthbert, National Institute of Mental Health, Bethesda, MD, USA
- Thien Thanh Dang-Vu, Center for Studies in Behavioral Neurobiology and Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada; PERFORM Centre, Concordia University, Montreal, QC, Canada; Centre de recherche de l'institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- Deborah Davis, Department of Social Psychology, University of Nevada, Reno, Reno, NV, USA
- Liliana Dell'Osso, Psychiatric Unit I, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sevilla Detera-Wadlieigh, Human Genetics Branch, National Institute of Mental Health, Intramural Research Program, Bethesda, MD, USA
- Arianna Di Florio, Cardiff University, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK
- Andreea O. Diaconescu, Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology (ETH Zurich), Zurich; Department of Psychiatry, University of Basel, Basel, Switzerland
- Katharina Domschke, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, and Center for Basics in NeuroModulation (NeuroModulBasics),

Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

Julianne Dorset, Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA

Wayne C. Drevets, Neuroscience, Janssen Research and Development, LLC, of Johnson and Johnson, Titusville, PA, USA

- Lynne M. Drummond, NHS England Highly Specialised Service (HSS) for Treatment Resistant OCD/BDD, South West London and St. Georges Mental Health Trust and St. George's, University of London, London, UK
- Julie Dunsmore, Trauma Recovery, RNS Community Health Centre, St. Leonards, NSW, Australia
- Klaus P. Ebmeier, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Christine Ecker, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
- Els Elaut, Department of Sexology and Gender, Ghent University Hospital, Ghent, Belgium
- Annette Erlangsen, Danish Research Institute for Suicide Prevention, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
- **Colin A. Espie**, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Barry J. Everitt, Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Christopher G. Fairburn, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Stephen V. Faraone, SUNY Upstate Medical University, Syracuse, NY, USA
- Michael Farrell, National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
- Mina Fazel, Department of Psychiatry, Medical Sciences Division, University of Oxford, Warneford Hospital, Oxford, UK
- Seena Fazel, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Thomas V. Fernandez, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Lorena Fernández de la Cruz, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Naomi A. Fineberg, NHS East of England Highly Specialised Service (HSS) for Treatment Resistant OCD/BDD, Obsessive Compulsive and Related Spectrum Disorders and Applied Neuroscience Department, Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Hatfield, UK
- Angus S. Fisk, Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK

Remy Flechais, Marina House, London, UK

- Russell G. Foster, Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Barbara Franke, Department of Human Genetics and Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Oliver Freudenreich, Department of Psychiatry, Massachusetts General Hospital Schizophrenia Clinical and Research Program, Harvard Medical School, Boston, MA, USA
- Matthew J. Friedman, National Center for PTSD, Dartmouth Medical School, Hanover, NH, USA
- John Gallacher, Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
- Borja García-Bueno, Department of Pharmacology, Faculty of Medicine, Complutense University of Madrid; CIBERSAM, Imas12, IUIN, Madrid, Spain
- John R. Geddes, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Philip R. Gehrman, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- S. Nassir Ghaemi, Department of Psychiatry, Tufts University, Tufts Medical Center; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Amanda K. Gilmore, Department of Psychiatry and Behavioral Science, National Crime Victims Research and Treatment Center, Medical University of South Carolina, Charleston, SC, USA
- David P. Goldberg, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Wayne K. Goodman, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Guy M. Goodwin, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Philip Gorwood, Saint-Anne Hospital, Paris Descartes University, Paris, France
- Michael G. Gottschalk, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Meryem Grabski, Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Cynthia A. Graham, Department of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK

- Anna I. Guerdjikova, Linder Center of HOPE, Mason, OH, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Abha R. Gupta, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Katherine A. Halmi, Weill Cornell Medical College, White Plains, NY, USA
- Jamie Hartmann-Boyce, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- Keith Hawton, Centre for Suicide Research, University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, UK
- Johannes Hebebrand, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Essen-Duisburg, Essen, Germany
- Verena Heise, Warneford Hospital, Department of Psychiatry, University of Oxford, Oxford, UK
- Alasdair L. Henry, Big Health Ltd, London, UK/ San Francisco, USA; Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Beate Herpertz-Dahlmann, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, Technical University of Aachen, Aachen, Germany
- Leigh van den Heuvel, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Gunter Heylens, Department of Psychiatry, Ghent University Hospital, Ghent, Belgium
- Cecilia A. Hinojosa, School of Arts and Sciences, Department of Psychology, Tufts University, Medford, MA, USA
- Ellen J. Hoffman, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Anthony J. Holland, Cambridge Neuroscience, University of Cambridge, Cambridge, UK
- Emily A. Holmes, Department of Psychology, Uppsala University, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, University of Oxford, Oxford, UK
- Rob Horne, Centre for Behavioural Medicine, Department of Practice and Policy, UCL School of Pharmacy, London, UK
- Paul L. Houser, Linder Center of HOPE, Mason, OH, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Louise M. Howard, Institute of Psychiatry, King's College London, London, UK
- Michele Hu, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK

- Christopher Hübel, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Stephen J. Hucker, Division of Forensic Psychiatry, University of Toronto, Toronto, ON, Canada
- Jennifer L. Hudson, Centre for Emotional Health, Department of Psychology, Macquarie University, Sydney, NSW, Australia
- Nathan T. M. Huneke, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Sandra Iglesias, Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
- Assen Jablensky, Royal Perth Hospital, The University of Western Australia, Crawley, WA, Australia
- Scott L. J. Jackson, Office of Assessment and Analytics, Southern Connecticut State University, New Haven, CT, USA; Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Kay Redfield Jamison, Department of Psychiatry, The Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
- Mahesh Jayaram, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health; Carlton South, VIC, Australia; NorthWestern Mental Health, Melbourne Health, Parkville, VIC, Australia
- Susan A. Jebb, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- Mark Jenkinson, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Emily J. H. Jones, Centre for Brain and Cognitive Development, School of Psychology, Birkbeck College, London, UK
- Ian Jones, Cardiff University, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK
- Ricardo E. Jorge, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, TIRR Memorial Hermann, Houston, TX, USA; Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
- Adam Ian Kaplin, Departments of Psychiatry and Neurology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
- Nav Kapur, Centre for Suicide Prevention, Centre for Mental Health and Safety, University of Manchester, Manchester, UK; Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
- Martien J. Kas, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands

- Navneet Kaur, School of Arts and Sciences, Department of Psychology, Tufts University, Medford, MA, USA
- Walter H. Kaye, UCSD Eating Disorders Center for Treatment and Research, San Diego, CA, USA
- Paul E. Keck, Jr., Linder Center of HOPE, Mason, OH, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Lena Katharina Keller, Institute for Medical Psychology, Medical Faculty, Ludwig-Maximilian-University, Munich, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Munich, Munich, Germany
- Megan M. Kelly, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA; Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
- Kimberley M. Kendall, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
- **Tony Kendrick**, Primary Care and Population Sciences, University of Southampton, Aldermoor Health Centre, Southampton, UK
- Lars Vedel Kessing, Psychiatric Center Copenhagen and University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Falk Kiefer, Central Institute for Mental Health, Mannheim, Germany
- Dean G. Kilpatrick, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
- Martin Knapp, Care Policy and Evaluation Centre, London School of Economics and Political Science; and NIHR School for Social Care Research, London, UK
- Nastassja Koen, Department of Psychiatry and Mental Health, University of Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
- Inga K. Koerte, Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; and Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- Cary S. Kogan, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
- Mirja Koschorke, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Ivan Koychev, Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
- David J. Kupfer, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA

- Natalie Kurniadi, UCSD Eating Disorders Center for Treatment and Research, San Diego, CA, USA
- Simon D. Kyle, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kate Langley, School of Psychology, Cardiff University, Cardiff, UK; MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Briony Larance, National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
- Matthew Large, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Yann Le Strat, Hospital Louis Mourrier, Department of Psychiatry, Colombes, France
- **Gregor Leicht**, University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch, Hamburg, Germany
- Christian Lepage, Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Stefan Leucht, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Juan C. Leza, Department of Pharmacology, Faculty of Medicine, Complutense University of Madrid; CIBERSAM, Imas12, IUIN, Madrid, Spain
- Anne Lingford-Hughes, Centre for Psychiatry, Department of Medicine, Imperial College London, London, UK
- Elizabeth F. Loftus, School of Social Ecology, University of California, Irvine, CA, USA
- Crick Lund, Alan J. Flisher Centre for Public Mental Health, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; Centre for Global Mental Health, King's Global Health Institute, Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Antonella Macerollo, Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool; School of Psychology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Clare Mackay, University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, UK
- Deirdre MacManus, Institute of Psychiatry, King's College London, London, UK
- Trine Madsen, Danish Research Institute for Suicide Prevention, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
- Gin S. Malhi, Discipline of Psychiatry, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Australia
- Luc Mallet, Personalized Neurology and Psychiatry University Department, University Hospital of Henri-Mondor, Créteil, France

- J. John Mann, Department of Psychiatry, Columbia University/New York State Psychiatric Institute, New York, NY, USA
- Russell L. Margolis, Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Andreas Marneros, Clinic for Psychiatry and Psychotherapy, Martin Luther University of Halle-Wittenberg, Halle, Germany
- Davide Martino, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary and Hotchkiss Brain Institute, Calgary, AB, Canada
- David Mataix-Cols, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Sivan Mauer, Department of Psychiatry, Tufts University,, Tufts Medical Center, Boston, MA, USA
- Helen S. Mayberg, Center for Advanced Circuit Therapeutics, Mount Sinai Icahn School of Medicine, New York, NY, USA
- Diego R. Mazzotti, Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Susan L. McElroy, Linder Center of HOPE, Mason, OH, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Joseph P. McEvoy, Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA., USA
- Bruce S. McEwen, Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
- Francis J. McMahon, Human Genetics Branch, National Institute of Mental Health, Intramural Research Program, Bethesda, MD, USA
- Herbert Y. Meltzer, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Harald Merckelbach, Forensic Psychology Section, Maastricht University, Maastricht, The Netherlands
- Alison K. Merikangas, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Kathleen R. Merikangas, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
- Thomas Merten, Department of Neurology, Vivantes Friedrichshain Hospital, Berlin, Germany
- David J. Miklowitz, Department of Psychiatry, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
- **Bruce Miller**, Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- TzeHow Mok, National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK

- Hans-Jürgen Möller, Department of Psychiatry, Ludwig Maximilian University, Munich, Germany
- Adam Moreton, Centre for Suicide Prevention, Centre for Mental Health and Safety, University of Manchester, Manchester, UK; Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
- Umberto Moretto, Center for Studies in Behavioral Neurobiology and Department of Exercise Science, Concordia University, Montreal, QC, Canada; PERFORM Centre, Concordia University, Montreal, QC, Canada; Research Center, Institute of Geriatrics, University of Montreal, Montreal, QC, Canada; Psychiatric Unit I, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Leslie C. Morey, Department of Psychology, Texas A&M University, College Station, TX, USA
- Nicole Mori, Linder Center of HOPE, Mason, OH, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Sarah E. Morris, National Institute of Mental Health, Bethesda, MD, USA
- Katherine H. Moyer, Central Alabama Veterans Administration Health Care System, Tuskegee AL, USA
- Davis N. Mpavaenda, NHS East of England Highly Specialised Service (HSS) for Treatment Resistant OCD/BDD, Obsessive Compulsive and Related Spectrum Disorders and Applied Neuroscience Department, Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Hatfield, UK
- Roger Mulder, University of Otago, Newtown, Wellington, New Zealand
- Christoph Mulert, Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
- Paul E. Mullen, Centre for Forensic Behavioural Sciences, Swinburne University, Hawthorn, VIC, Australia
- Marcus Munafò, School of Experimental Psychology, University of Bristol, Bristol, UK
- Declan Murphy, Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Rebecca Murphy, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Gerald Nestadt, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Charles R. Newton, Department of Psychiatry, Warneford Hospital, Oxford, UK
- Giles Newton-Howes, University of Otago, Newtown, Wellington, New Zealand

- Olav Nielssen, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Akin Nihat, National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
- Anna Christina Nobre, Oxford Centre for Human Brain Activity, Department of Psychiatry, Department of Experimental Psychology, and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Merete Nordentoft, Mental Health Centre, Copenhagen University, Copenhagen, Denmark
- Michael C. O'Donovan, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
- John O'Grady, Eardisley, Herefordshire, UK
- Berend Olivier, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences and Brain Centre Rudolf Magnus, Utrecht University, The Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Isabella Pacchiarotti, Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
- Jennifer Pacheco, National Institute of Mental Health, Bethesda, MD, USA
- Allan I. Pack, Center for Sleep and Circadian Neurobiology, Division of Sleep Medicine/ Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Brian A. Palmer, Mercy Hospital, Coon Rapids, MN, USA; formerly Department of Psychiatry, Mayo Clinic College of Medicine, Rochester, MN, USA
- Melanie Palmer, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Nicola Palomero-Gallagher, Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
- Christos Pantelis, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health; Carlton South, VIC, Australia; NorthWestern Mental Health, Melbourne Health, Parkville, VIC, Australia; Adult Mental Health Rehabilitation Unit, Sunshine Hospital; St Albans, VIC, Australia
- Christian Paret, Department of Psychosomatic Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Steve Pearce, Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
- Stuart N. Peirson, Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK

- Marcela Pereira, Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Katharine A. Phillips, Rhode Island Hospital, Providence, RI, USA; Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Mary L. Phillips, Department of Psychiatry, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh PA, USA
- Pierre Pichot, National Academy of Medicine, Paris, France
- Alexandra Pitman, Division of Psychiatry, University College London, London, UK
- Guilherme V. Polanczyk, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
- Jonathan Price, Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
- David Pritchett, Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Rosemary Purcell, Orygen, The National Centre of Excellence in Youth Mental Health and the Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Anto P. Rajkumar, Institute of Mental Health, University of Nottingham, Nottingham, UK; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Nicolas Ramoz, INSERM, Center of Psychiatry and Neuroscience, Paris, France
- Beverley Raphael[†], Academic Unit of Psychiatry and Addiction Medicine, ANU Medical School, The Canberra Hospital, Garran, ACT, Australia
- Judith L. Rapoport, Child Psychiatry Branch, NIMH, Bethesda, MD, USA
- Geoffrey M. Reed, Department of Mental Health and Substance Abuse, World Health Organization, Geneva, Switzerland; Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Susan Rees, Psychiatry Research and Teaching Unit, University of New South Wales, Mental Health Unit, The Liverpool Hospital, Liverpool, NSW, Australia
- Darrel A. Regier, Center for the Study of Traumatic Stress (CSTS), Department of Psychiatry, Uniformed Services University (USUHS), Bethesda, MD, USA
- Jemma Reid, NHS East of England Highly Specialised Service (HSS) for Treatment Resistant OCD/BDD, Obsessive Compulsive and Related Spectrum Disorders and Applied Neuroscience Department, Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Hatfield, UK
- Patricio Riva-Posse, Department of Psychiatry, Emory University, Atlanta, GA, USA

- Trevor W. Robbins, Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Kenneth Rockwood, Dalhousie University, Halifax, NS, Canada
- Till Roenneberg, Institute for Medical Psychology, Medical Faculty, Ludwig-Maximilian-University, Munich, Germany
- James Rucker, The Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Julia Russell, School of Arts and Sciences, Department of Psychology, Tufts University, Medford, MA, USA
- Jack Samuels, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Charles A. Sanislow, Department of Psychology and Program in Neuroscience and Behavior, Wesleyan University, Middletown, CT, USA
- Kate E. A. Saunders, Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
- Julian Savulescu, Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford; Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, UK; Murdoch Children's Research Institute; Melbourne Law School, University of Melbourne, Melbourne, Australia
- Christian Schmahl, Department of Psychosomatic Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Sophie C. Schneider, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Vivian Schultz, Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA; and Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- Stephen Scott, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Soraya Seedat, Stellenbosch University, Stellenbosch, South Africa
- Rebbia Shahab, Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Trevor Sharp, Department of Pharmacology, University of Oxford, Oxford, UK
- Michael Sharpe, Department of Psychiatry, University of Oxford, Oxford, UK
- Philip Shaw, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
- Martha E. Shenton, Psychiatry Neuroimaging Laboratory, Department of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston; and VA Boston Healthcare System, Brockton, MA, USA

Lisa M. Shin, School of Arts and Sciences, Department of Psychology, Tufts University, Medford, MA, USA

Derrick Silove, School of Psychiatry, University of New South Wales, NSW, Australia

Judit Simon, Department of Health Economics, Center for Public Health, Medical University of Vienna, Vienna, Austria; Department of Psychiatry, Nuffield Department of Public Health, University of Oxford, Oxford, UK

Emily Simonoff, Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK

Julia M. A. Sinclair, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK

Ilina Singh, Department of Psychiatry, Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, UK

Nisha Singh, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, London, UK

Andrew E. Skodol, Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, USA

William H. Sledge, Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA

Dylan Smith, Center for Studies in Behavioral Neurobiology and Department of Exercise Science, Concordia University, Montreal, QC, Canada; PERFORM Centre, Concordia University, Montreal, QC, Canada

Olaf Sporns, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA

Sarah Steeg, Centre for Suicide Prevention, Centre for Mental Health and Safety, University of Manchester, Manchester, UK

Dan J. Stein, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa

Klaas E. Stephan, Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging, University College London, London, UK

Emily R. Stern, Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA

Jon Stone, Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, UK William S. Stone, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA

Eric A. Storch, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA

Per Svenningsson, Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska Institute, Stockholm, Sweden

Eszter Szekely, Section on Neurobehavioral Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institute of Mental Health, Intramural Program, Bethesda, MD, USA

Akitoshi Takeda, Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA; Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan

Eric Taylor, Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK

Anita Thapar, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK; MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK

Graham Thornicroft, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK

George K. Tofaris, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK

Mark Toynbee, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK

Irene Tracey, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK

Ming T. Tsuang, Department of Psychiatry, Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA

Bedirhan T. Üstün, Department of Psychiatry, Koc University, Istanbul, Turkey

Wim van den Brink, Academic Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands

Michael B. VanElzakker, School of Arts and Sciences, Department of Psychology, Tufts University, Medford, MA, USA

Eduard Vieta, Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain

Fred R. Volkmar, Department of Psychiatry, Child Study Center, Yale University, New Haven, CT, USA Alexander von Gontard, Department of Child and Adolescent Psychiatry, Saarland University Hospital, Homburg, Germany

Nicole Votruba, Centre for Global Mental Health, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK

Jane Walker, Department of Psychiatry, University of Oxford, Oxford, UK

James T. R. Walters, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK

Caleb Webber, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK

Aliza Werner-Seidler, Black Dog Institute, University of New South Wales, Randwick, Sydney, NSW, Australia

Christina E. Wierenga, UCSD Eating Disorders Center for Treatment and Research, San Diego, CA, USA

Eva C. Winnebeck, Institute for Medical Psychology, Medical Faculty, Ludwig-Maximilian-University, Munich, Germany

Adam Winstock, Institute of Epidemiology and Health Care, University College London London, UK

Hans-Ulrich Wittchen, Clinical Psychology and Psychotherapy RG, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany

Sally Wooding, Mental Health Branch, NSW Health Department, Sydney, NSW, Australia

Mark Woolrich, Oxford Centre for Human Brain Activity (OHBA), University Department of Psychiatry, Warneford Hospital, Oxford, UK

Dale Zhou, Child Psychiatry Branch, NIMH, Bethesda, MD, USA

Karl Zilles, Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany

Joseph Zohar, Post Trauma Center, Chaim Sheba Medical Center, and Tel Aviv University, Israel

Enikő Zsoldos, Warneford Hospital, Department of Psychiatry, University of Oxford, Oxford, UK

Alessandro Zuddas, Child and Adolescent Neuropsychiatric Unit, Department of Biomedical Sciences, University of Cagliari and 'G. Brotzu' Hospital Trust, Cagliari, Italy

Free personal online access for five years

Individual purchasers of this book are also entitled to free personal access to the online edition for five years on *Oxford Medicine Online* (www.oxfordmedicine.com). Please refer to the access token card for instructions on token redemption and access.

Oxford Medicine Online allows you to print, save, cite, email, and share content; download high-resolution figures as PowerPoint[®] slides; save often-used books, chapters, or searches; annotate; and quickly jump to other chapters or related material on a mobile-optimized platform.

SECTION 1 The subject matter and approach to psychiatry

- 1. The patient's perspective 3 Kay Redfield Jamison and Adam Ian Kaplin
- 2. Public attitudes and the challenge of stigma 6 Nicole Votruba, Mirja Koschorke, and Graham Thornicroft
- 3. Global mental health 12 Crick Lund, Dörte Bemme, and Judy Bass
- The history of psychiatry as a medical specialty 23
 Pierre Pichot and Guy M. Goodwin
- 5. New ethics for twenty-first-century psychiatry 34 Matthew L. Baum, Julian Savulescu, and Ilina Singh
- 6. Foundations of phenomenology/descriptive psychopathology 42

Hans-J**ü**rgen Möller

- 7. DSM-5 and ICD-11 classifications 51 Darrel A. Regier, David P. Goldberg, Bedirhan T. Üstün, and Geoffrey M. Reed
- 8. The National Institute of Mental Health Research Domain Criteria: an alternative framework to guide psychopathology research 62

Charles A. Sanislow, Sarah E. Morris, Jennifer Pacheco, and Bruce N. Cuthbert

- Application of research evidence in clinical practice 73 Andrea Cipriani, Stefan Leucht, and John R. Geddes
- 10. A neuroscience-based nomenclature for psychotropic drugs 80 Guy M. Goodwin, Joseph Zohar, and David J. Kupfer

The patient's perspective

Kay Redfield Jamison and Adam Ian Kaplin

Introduction

It is difficult to be a psychiatric patient, but a good doctor can make it less so. Confusion and fear can be overcome by knowledge and compassion, and resistance to treatment is often, although by no means always, amenable to change by intelligent persuasion that leads to better healing. The devil, as the fiery melancholic Byron knew, is in the details.

Delivering the diagnosis, prognosis, and plan

Patients, when first given a psychiatric diagnosis, are commonly both relieved and frightened-relieved because often they have been overwhelmed by pain, anxiety, and hopelessness for a considerable period of time, and frightened because they do not know what the diagnosis means, what the treatment will entail, and their likelihood of obtaining a meaningful response. They do not know if they will return to the way they once were, whether the treatment they have been prescribed will or will not work, and, even if it does work, at what cost it will be to them in terms of their notions of themselves, potentially unpleasant side effects, and the reactions of their family members, friends, colleagues, and employers. Perhaps most disturbing, they do not know if their depression, psychosis, anxieties, or compulsions will return to become a permanent part of their lives. Caught in a state often characterized by personal anguish, social isolation, and confusion, newly diagnosed patients find themselves on a quest to regain a sense of mastery of themselves and their surroundings. One of the main goals of therapies of all types is to empower the patient and give them some control back over their world and rechart the meaning and purpose of their lives under altered circumstances.

The specifics of what the doctor says and the manner in which he or she says it are critically important from the start and will colour the patient's ongoing treatment course for years to come. Most patients who complain about receiving poor psychiatric care do so on several grounds—their doctors, they feel, spend too little time explaining the nature of their illnesses and treatment; they are reluctant to consult with, or actively involve, family members; they are patronizing and do not adequately listen to what the patient has to say; they do not encourage questions or sufficiently address the concerns of the patient; they do not discuss alternative treatments, the risks of treatment, and the risks of no treatment; and they do not thoroughly forewarn about side effects of medications.

Most of these complaints are avoidable. Time, although difficult to come by, is well spent early on in the course of treatment when the manifestations of confusion and hopelessness are greatest, the risk of non-adherence is highest, and the possibility of suicide substantially increased. Hope can be realistically extended to patients and family members, and its explicit extension is vital to those whose illnesses have robbed them not only of hope, but also of belief in themselves, their future, and the very meaning of their lives. The hope provided needs to be tempered, however, by an honest and realistic explication of possible difficulties yet to be encountered: unpleasant side effects from medications; a rocky time course to meaningful recovery which will often consist of many discouraging cycles of feeling the progress of marching towards wellness, only to stumble and slide temporarily backwards towards illness again; and the probable personal, professional, and financial repercussions that come in the wake of having a psychiatric illness.

Importance of doctor-patient communication

It is terrifying to lose one's sanity or to be seized by a paralysing depression. No medication alone can substitute for a good doctor's clinical expertise and the kindness of a doctor who understands both the medical and psychological sides of mental illness. Nor can any medication alone substitute for a good doctor's capacity to listen to the fears and despair of patients trying to come to terms with what has happened to them. A good doctor is a therapeutic optimist who is able to instil hope and confidence to combat bewilderment and despair. Great doctors are able to provide the unwavering care to their patients that they would want a member of their own family to receive, blending empathy and compassion with expertise and confidence.

Doctors need to be direct in answering questions, to acknowledge the limits of their understanding, and to encourage specialist consultations when the clinical situation warrants it. They also need to create a therapeutic climate in which patients and their families feel free, when necessary, to express their concerns about treatment or to request a second opinion. There must also be a willingness by doctors to collaborate across medical disciplines in the care of their psychiatric patients because of the influence and, likewise, the impact of somatic diseases on mental illness-for example, there is evidence that depression predisposes people to conditions such as myocardial infarction, diabetes, and multiple sclerosis, all of which conversely increase the likelihood of depression. Moreover, persons with major depression and schizophrenia have a 40-60% greater chance of dying prematurely than the general population, due to physical health problems that are often left unattended or exacerbated by the side effects of psychotropic medications. Doctors are also frequently called upon to advocate for their psychiatric patients who are frequently stigmatized and therefore at great risk of being discriminated against by being deprived of their professional, economic, social, and cultural rights. Particular care must be taken by doctors to prevent their patients from receiving substandard care by refusing to share, against their patient's better judgement, important aspects of their mental illness with non-mental health medical practitioners.

Treatment non-adherence, one of the major causes of unnecessary suffering, relapse, hospitalization, and suicide must be addressed head-on. Unfortunately, doctors are variable in their ability to assess, predict, and facilitate adherence in their patients [1]. Asking directly and often about medication concerns and side effects, scheduling frequent follow-up visits after the initial diagnostic evaluation and treatment recommendation, and encouraging adjunctive psychotherapy or involvement in patient support groups can make a crucial difference in whether or not a patient takes medication in a way that is most effective. Aggressive treatment of unpleasant or intolerable side effects, minimizing the dosage and number of doses, and providing ongoing, frequently repetitive education about the illness and its treatment are likewise essential, if common-sense, ways to avert or minimize non-adherence.

Communication in the digital age

The ever-expanding availability of health information technology, ranging from assistive devices (that permit regular tracking of symptoms and reminders to facilitate treatment adherence such as automated texting and telemedicine) to therapeutic tools (that provide interventions such as online cognitive behavioural therapy), will continue to improve the ease with which care can be delivered. But in the end, it is the therapeutic alliance between patient and clinician, honed and proven over two and a half millennia since the time of Hippocrates, that will and must remain central to the healing process. Technology can assist and enhance, but not replace, the doctor–patient relationship.

Doctor as teacher

Education is, of course, integral to the good treatment of any illness, but this is especially true when the illnesses are chronic and shrouded in the secrecy that is caused by both social and personal stigma. The term 'doctor' derives originally from the Latin word for teacher, and it is in their roles as teachers that doctors provide patients with the knowledge and understanding to combat the confusion and unpredictability that surround mental illness. Patients and their family members should be encouraged to write down any questions they may have, as many individuals are intimidated once they find themselves in a doctor's office. Any information that is given orally to patients should be repeated as often as necessary (due to the cognitive difficulties experienced by many psychiatric patients, especially when acutely ill or recovering from an acute episode) and, whenever feasible, provided in written form as well. Additional information is available to patients and family members in books and pamphlets obtainable from libraries, bookstores, and patient support groups, but, ever more commonly, information is accessible through the Internet as videos, websites, and online support groups [2, 3]. Visual aids, such as charts portraying the natural course of the treated and untreated illness or the causes and results of sleep deprivation and medication cessation, are also helpful to many [4-6]. Finally, providing the patients with selfreport scales to monitor their daily progress, such as mood charts in affective disorder, not only provides invaluable clinical data, but also teaches patients and their physicians to better understand the patient's illnesses and their response to therapeutic interventions and exacerbating stressors. Family members and significant others can, and usually do, play key roles as outside sources of information which can be critically important in ensuring that the proper diagnosis is made at the outset. Patients, when they are well, also often benefit from a meeting with their family members and their doctor that focuses upon drawing up contingency plans in case their illness should recur. These meetings also provide an opportunity to shore up the support system the patient has by educating their caregivers about the nature, cause, manifestations, and treatment of their loved one's mental illness. Such meetings may also include what is to be done in the event that a psychiatric emergency arises and hospitalization is required, a discussion of early warning signs of impending psychotic or depressive episodes, methods for regularizing sleep and activity patterns, techniques to protect patients financially, and ways to manage suicidal behaviour should it occur. Suicide, globally the second leading cause of death in 15- to 29-year olds, is the major cause of premature death in severe psychiatric illnesses [7, 8], and its prevention is of first concern. Those illnesses most likely to result in suicide (mood disorders, comorbid alcohol and drug abuse, and schizophrenia) need to be treated early, aggressively, and often for an indefinite period of time [2, 10]. Lithium, which has demonstrated significant efficacy in preventing suicide, should be considered when appropriate [11]. The increasing evidence that treatment early in psychiatric illness may improve the long-term course needs to be considered in light of the reluctance of many patients to stay in treatment [10, 12, 14].

Conclusions

The ancient proverb *medice, cura te ipsum* (physician, heal thyself) applies most pressingly to mental illness, because the rates of burnout, depression, and suicide among doctors are deeply concerning. A willingness to change the culture of medicine, so that more time, attention, and education is given to the critically important aspects of mental health, routine screening, and treatment of depression to encourage, rather than punish, seeking help. No one who has treated or suffered from mental illness would minimize the difficulties involved in successful treatment. Modern medicine gives options that did not exist even 10 years ago, and there is every reason to expect that improvements in psychopharmacology, psychotherapy, and diagnostic techniques will continue to develop at a galloping pace. Still, the relationship between the patient and doctor will remain central to the treatment, as Morag Coate wrote more than 40 years ago in *Beyond All Reason* [13]:

'Because the doctors cared, and because one of them still believed in me when I believed in nothing, I have survived to tell the tale. It is not only the doctors who perform hazardous operations or give lifesaving drugs in obvious emergencies who hold the scales at times between life and death. To sit quietly in a consulting room and talk to someone would not appear to the general public as a heroic or dramatic thing to do. In medicine there are many different ways of saving lives. This is one of them.'

FURTHER INFORMATION

Non-governmental mental health websites: USA http://www.nami.org/ http://www.dbsalliance.org/site/PageServer?pagename=home Governmental mental health websites: USA http://www.nimh.nih.gov/ https://www.samhsa.gov/treatment Non-governmental mental health websites: UK http://www.mentalhealth.org.uk/ http://www.mind.org.uk Governmental mental health websites: UK https://www.nice.org.uk/guidance/conditions-and-diseases/ mental-health-and-behavioural-conditions http://mentalhealthcare-uk.com

REFERENCES

- 1. Osterberg, L. and Blaschke, T. (2005). Adherence to medication. *New England Journal of Medicine*, 353, 487–97.
- 2. Goodwin, F.K. and Jamison, K.R. (2007). *Manic-depressive illness* (2nd edn). Oxford University Press, New York, NY.
- 3. Wyatt, R.J. and Chew, R.H. (2005). *Practical psychiatric practice. Forms and protocols for clinical use* (3rd edn). American Psychiatric Association, Washington, D.C.
- Post, R.M., Rubinow, D.R., and Ballenger, J.C. (1986). Conditioning and sensitisation in the longitudinal course of affective illness. *British Journal of Psychiatry*, 149, 191–201.
- Wehr, T.A., Sack, D.A., and Rosenthal, N.E. (1987). Sleep reduction as a final common pathway in the genesis of mania. *American Journal of Psychiatry*, 144, 201–4.
- Baldessarini, R.J., Tondo, L., and Hennen, J. (2003). Lithium treatment and suicide risk in major affective disorders: update and new findings. *Journal of Clinical Psychiatry*, 64(Suppl 5), 44–52.
- World Health Organization. (2014). Preventing suicide: a global imperative. http://www.who.int/mental_health/suicide-prevention/world_report_2014/en/
- 8. Institute of Medicine (IoM). (2002). *Reducing suicide: a national imperative*. National Academy Press, Washington, D.C.
- 10. Wyatt, R.J. (1995). Early intervention for schizophrenia: can the course of the illness be altered? *Biological Psychiatry*, 38, 1–3.
- 11. Cipriani A, Hawton K, Stockton S, Geddes JR. (2013). Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. *BMJ*, 346, f3646.
- Berger, G., Dell'Olio, M., Amminger, P., et al. (2007). Neuroprotection in emerging psychotic disorders. *Early Intervention in Psychiatry*, 1, 114–27.
- 13. Coate, M. (1964). Beyond all reason. Constable, London.
- 14. Jamison, K.R., Gerner, R.H., and Goodwin, F.K. (1979). Patient and physician attitudes toward lithium: relationship to compliance. *Archives of General Psychiatry*, 36, 866–9.

2

Public attitudes and the challenge of stigma

Nicole Votruba, Mirja Koschorke, and Graham Thornicroft

Introduction

Stigma can be considered as an overarching term that includes challenges faced by people with mental illness related to knowledge, attitudes, and behaviour [1]. The knowledge domain includes low levels of mental health literacy, for example among the general population (ignorance); the attitudinal domain relates to almost entirely negative affect towards people with experience of mental illness (prejudice), while the behavioural aspects reflect predominantly forces for the social exclusion and diminished citizenship for people with mental illness (discrimination). This chapter considers the evidence of the implications of these elements and also summarizes the literature on what can be done to effectively reduce stigma and discrimination.

The practical implications of stigma and discrimination

The consequences of stigma and discrimination are wide-reaching and severe, and affect people with mental disorders, their family members, mental health staff, institutions, and treatments, as well as society as a whole.

Discrimination, the behavioural consequence of stigma, adds to the disability of persons with mental illness and leads to disadvantages in many aspects of life, including personal relationships, education, and work [1, 2]. It limits the life opportunities of those affected, through loss of income, prolonged unemployment, reduced access to housing or health care, for example, and therefore reduced access to important means of recovery [3]. Commonly, people with mental disorders experience unequal treatment for physical health conditions, leading to rates of morbidity and mortality much beyond what is attributable to their primary mental disorder [4]. Discrimination because of mental illness is pervasive and universal—international studies of mental illness discrimination have shown that rates of both anticipated and experienced discrimination are consistently high across countries among people with mental disorders [5–8].

Yet another form of devaluation takes place when individuals affected by mental illness stigma accept the negative beliefs held against them and lose self-esteem, resulting in self-stigma (or 'internalized stigma') [9–11]. Internal consequences of stigma and

discrimination have been the subject of a number of studies and include feelings of shame, a loss of emotional well-being, poor self-efficacy, and negative recovery outcomes [12–19].

What self-stigma can mean is vividly described in a quote by Gallo [20, pp. 407–8] quoted in Angell *et al.* (2005) [21]—a statement from a person with mental illness on how stigma and discrimination have changed the way she feels about herself:

'I perceive myself, quite accurately, unfortunately, as having a serious mental illness and therefore as having been relegated to what I called "the social garbage heap", I tortured myself with the persistent and repetitive thought that I would encounter, even total strangers, did not like me and wished that mentally ill people like me did not exist. Thus I would do things such as standing away from others at bus stops and hiding and cringing in the far corners of subway cars. Thinking of myself as garbage, I would even leave the side walk in what I thought of as exhibiting the proper difference to those above me in social class. The latter group, of course, included all other human beings' [20]¹

Internal consequences of stigma and discrimination can further lead to hopelessness and depression, social withdrawal, and reduced participation in treatment programmes [3] and act as a stressor that perpetuates ill health and makes recovery more difficult [22, 23]. Coping responses, such as secrecy about the condition and avoidance of others, further feed into the cycle of isolation and alienation [3].

In addition to experiences of direct discrimination from others, persons suffering from mental illness face several forms of structural discrimination, for example manifest in the lack of resources allocated to the care of mental disorders, the location and quality of some treatment facilities, and inadequate attention to the physical health needs of people with mental disorders [24, 25].

Paradoxically, stigmatizing practices and even human rights violations are found within mental health services worldwide [26–28]. Undesirable conditions in mental health institutions, as well as the shame and fear of disclosure associated with attending them, act as a barrier for help-seeking and the effective treatment of mental health

¹ Reproduced from *Schizophr Bull.*, 20(2), Gallo KM, First person account: Selfstigmatization, pp. 407–410, Copyright (1994), with permission from Oxford University Press.

conditions [29]. For example, people with mental disorders may delay seeking treatment or terminate treatment prematurely for fear of being labelled and discriminated against [3, 30].

A statement from Diana on restrained treatment by health-care professionals in a psychiatric hospital:

'There were between six and eight staff members, I am not sure, I can't remember too much. I didn't have a very clear vision. I saw people surrounding me, holding me by the hand, holding me by the legs. I don't think it was something they had to do. There was no talking. They would have helped better if they would have been more understanding and more talking... more respect. I felt really bad. While I was in hospital I tried to complain but I don't know if anybody was listening. It was a nightmare'. [1, p. 87]²

Another very commonly cited source of stigma is family members. Even although many people experience great support from their families, it is family members too who often hold negative attitudes towards people with mental illness and even within their families treat them in a discriminatory way.

'There I was, the eldest son suffering a sudden deep depression, crying and unable to work. Often threatened by my confused Dad as being "weak", "a fuck-up", and a "nutter". No-one else in the family going back generations had gone "mad like that". I was told not to tell any of the neighbours what was happening – to stop the gossip. (Paul)' [1, p. 2]³

In many societies where services are scarce and support systems inadequate, families feel forced to resort to chaining and other practices to restrain relatives with mental illness [28, 31].

Research has shown that mental health professionals themselves hold negative stereotypes and attitudes similar to the general population and even more pessimistic views in the domain of recovery, possibly due to their disproportionate contact with those with poorer outcomes [32]. Service users commonly report lack of empathy and interest from health professionals, diagnoses being given with negative prognosis, and lack of information and involvement in decision-making [33].

'Some of the worst experiences I have had have been in psychiatric hospitals. I recognise the need to be kept safe but often I have felt that my rights and dignity have been stripped away. Being intimately searched again and again and constantly followed whilst under "close observation" just leaves me feeling singled out and perceived as little more than a nuisance ("there's to be no trouble on my shift") [...] I have heard many comments along the lines of "Oh, she's cut again. Why doesn't she do it properly and kill herself". (Sandra) [1], p. 94]⁴

Stigma and discrimination do not only affect persons suffering from mental illness, but also families [34–36]. The effect of negative attitudes towards the family members of people with mental illness has been described as 'stigma by association' and may lead to experiences of direct discrimination, as well as feelings of shame and self-blame [1]. In societies where the cohesion of family networks is strong, the impact of stigma by association may be severe and can include economic consequences, as well as impact on work or marital prospects [37].

Contextual factors relevant to stigma and discrimination

The manifestations of stigma and discrimination are subject to the influence of a range of cultural and contextual factors [38]. Key domains through which culture shapes the manifestations of stigma include: (1) notions of 'mental illness' and explanatory models (for example, in many settings, psychiatric symptoms may not be seen as indicative of an 'illness'); (2) cultural meanings of the impairments and manifestations caused by the disorder and its stigma (for example, the impact of stigma on marital prospects may have more severe implications in cultural contexts where marriage is central); and (3) notions of self and personhood (for example, higher levels of family cohesion may offer more support but also go along with a more widespread impact of stigma across family members and generations).

Also socio-economic factors, such as poverty and access to health care, determine the context in which stigma is enacted and experienced [7, 9, 39, 40]. In low- and middle-income countries (LMICs) and other settings where most people with mental illness do not have access to social welfare benefits, the negative economic consequences of stigma, for example, through discrimination in work, may be so severe as to threaten the economic survival of entire families [41].

Global patterns of stigma and discrimination

There are few studies comparing the frequency of experiences of stigma and discrimination in different contexts, and recent research has sought to address this gap in the literature. International surveys of experienced and anticipated discrimination among people with schizophrenia (27 countries) and among people with depression (39 countries), for example, found rates of both outcomes to be consistently high across cultures [5, 7, 8]. Significant between-country variation was found for experienced discrimination, but not for anticipated discrimination reported by people with schizophrenia [7]. A report on the qualitative data collected as part of the same study, however, found few transnational differences [6]. Another study looking at public attitudes across 16 countries identified a 'backbone' of certain prejudices that were held across all settings, even where overall stigma was relatively low [42].

On the other hand, some smaller studies suggest stark differences between high-income country (HIC) and LMIC settings, for example, studies from China [43] and India [41], with rates of experienced discrimination much lower than those commonly reported from HIC studies, and qualitative differences in the meaning and appraisal of the experiences made. At first sight, this appears to support the findings of early cross-cultural research on stigma, suggesting that the stigma of mental illness may be less marked in non-industrialized societies due to a more supportive environment with more social cohesion, and

² Reproduced from Thornicroft G, *Shunned: Discrimination against people with mental illness*, p. 87, Copyright (2006), with permission from Oxford University Press.

³ Reproduced from Thornicroft G, *Shunned: Discrimination against people with mental illness*, p. 2, Copyright (2006), with permission from Oxford University Press.

⁴ Reproduced from Thornicroft G, *Shunned: Discrimination against people with mental illness*, p. 94, Copyright (2006), with permission from Oxford University Press.

therefore less risk of prolonged rejection, isolation, segregation, and institutionalization [44, 45; 46, 47 cited in 48]. The better prognosis of schizophrenia found in international studies by the World Health Organization (WHO) [49–52] has therefore commonly been attributed to less stigmatization in LMICs [53].

Yet, in contradiction to this, there is now a considerable body of evidence documenting that in many LMIC settings, experiences of stigma, discrimination, and human rights abuses due to mental illness are common and severe [5, 11, 27, 37, 54–62]. One international study using population-wide data from 16 countries found even higher rates of reported stigma among people with mental disorders in developing (31.2%) than in developed (20%) countries [55].

In conclusion, our understanding of global patterns of stigma and discrimination is still rather limited to date, and further highquality cross-cultural research is needed to throw light on the forces that drive intercultural differences in the manifestation of stigma. Understanding the factors that shape stigma distinctly in different contexts will serve to inform the development of context-specific anti-stigma interventions.

How to measure stigma

Alongside the development of research into stigma, the creation and validation of instruments to measure stigma and discrimination took their beginnings in the 1960s. Early scales focused largely on the measurement of stigmatizing attitudes among the general population. Since, numerous scales have been developed, incorporating a wider range of perspectives on stigma and discrimination, notably the inclusion of the perspectives and experiences of service users and carers [63]. Nevertheless, there continues to be a distinct lack of measures developed or validated in LMIC settings and/or non-Western cultures [64]. Several methods have been put forward which seek to achieve cultural validity of measures of stigma and discrimination, including an approach by Yang et al. which proposes to focus on 'what matters most' in a given culture [65, 66]. A recent review concluded that future efforts in the domain of measuring stigma and discrimination should focus on: (i) procedures for achieving cultural validity of measurement tools, (ii) indicators for structural stigma and stigmatizing behaviour (underrepresented in current scales), and (iii) targeted or tailored measures for specific subgroups, all with a particular focus on LMIC countries where literature is sparse [63]. This is important as the appropriate measurement of stigma and discrimination is critical to understanding whether and how anti-stigma interventions are effective [63].

How to tackle stigma

The critical question to tackle stigma in mental health is: what interventions work? In the past years, research on anti-stigma interventions to change knowledge, attitudes, and behaviour towards people with mental illness has increased. Most interventions aim at changing one or several of these aspects through education, social contact, or behavioural interventions.

A recent narrative review concluded with the following main findings on the evidence of anti-stigma interventions [64]:

- (1) 'at the population level there is a fairly consistent pattern of shortterm benefits for positive attitude change, and some lesser evidence for knowledge improvement;
- (2) for people with mental illness, some group-level anti-stigma inventions show promise and merit further assessment;
- (3) for specific target groups, such as students, social-contact-based interventions usually achieve short-term (but less clearly long-term) attitudinal improvements, and less often produce knowledge gains;
- (4) this is a heterogeneous field of study with few strong study designs with large sample sizes;
- (5) research from low-income and middle-income countries is conspicuous by its relative absence;
- (6) caution needs to be exercised in not overgeneralising lessons from one target group to another;
- (7) there is a clear need for studies with longer-term follow-up to assess whether initial gains are sustained or attenuated, and whether booster doses of the intervention are needed to maintain progress;
- (8) few studies in any part of the world have focused on either the service user's perspective of stigma and discrimination or on the behaviour domain of behavioural change, either by people with or without mental illness in the complex processes of stigmatisation.⁵

It has been found that generally the effectiveness of the interventions depends much on the target group and the time frame of the intervention. However, most studies are short-term effectiveness studies looking at attitudes of the general public towards people with mental disorders in HICs. The most widely evaluated interventions are education/information and social contact [63].

Overall there remains a large knowledge gap for medium- to longterm anti-stigma interventions, and particularly for interventions in low-income countries where evidence is almost absent [63]. There is also a need for: (i) more high-quality interventions based on robust methods and validated measures, (ii) more systematic reviews on long-term effectiveness, (iii) more randomized controlled trials, and (iv) more evidence from LMICs [67].

Social contact-based interventions

Interventions using social contact as a key element have been found to be the most effective type of interventions [68]. At the same time, social contact is also the best evidence-based intervention, particularly in short-term outcomes. Evidence from systematic reviews suggests that social contact is the most effective intervention in terms of achieving short-term improvements in knowledge and attitudes among adults.

An account by a young man who participated in the German school project 'Crazy? So what!':

'Eight years ago I became ill: I developed schizophrenia [...]. I've been feeling better now for two years. But I do have to take good care of myself. But hiding because of that? These times are over. I finally want to live now! Talking to the students is exhausting but also really great [...] they discover that there are a lot more commonalities than differences between us, that their images of the 'crazy ones' are

⁵ Reproduced from *The Lancet*, 387(10023), Thornicroft G, Mehta N, Clement S, *et al.*, Evidence for effective interventions to reduce mental-health-related stigma and discrimination, pp. 1123–1132, Copyright (2015), with permission from Elsevier.

not true. It feels really good to contribute to achieving that we finally can talk openly about mental illness, and that nobody has to hide because of a mental health problem.' $[69]^6$

Social contact is the most effective type of intervention in the short term, but it is not clear whether effectiveness is sustained in the medium to longer term [67]. While social contact has been reported to be the most effective intervention in adults, these evaluations are mostly based on intervention studies from HICs. There is a great need for more evidence from LMICs to assess whether social contact is as effective there and how to implement it to suit local requirements. In addition, more research is needed to investigate the long-term effectiveness of social contact interventions.

Educational interventions

"The [...] practical way to stop stigma and discrimination is by better education of schoolchildren at an early age and to reinforce this message through lifelong learning. Each course or class should not only start with "household" messages about fire escapes, etc., but that bullying or discrimination will not be tolerated whilst on the course.' (Paul) [1]

(Thornicroft, 2006)

While direct social contact interventions have been found to be the most effective intervention in adults, systematic reviews have found that in students, educational interventions are more effective in reducing stigma in students' knowledge and attitudes in the short term. However, the evidence base for effectiveness in the medium to longer term is weak [64]. A meta-analysis found both social contact as well as educational interventions reduce stigma significantly and, importantly, irrespectively if these interventions are delivered face-to-face or via Internet programmes [70]. Moreover, Thornicroft et al. have found evidence that education and information seem to be the most effective interventions in the medium and long terms [64]. Evaluations in HICs have found that stigma and discrimination against people with mental illness can be reduced through focused, long-term information campaigns like Time to Change in the United Kingdom (UK) [71]. High-quality effectiveness evaluations for educational interventions are scarce for LMICs. Several national and regional campaigns from LMICs report qualitative changes in attitudes and behaviour; however, these effects lack high-quality evaluation for quantitative efficiency [72].

Behavioural domain

Overall the effect of behavioural therapy and psychotherapy has not been sufficiently researched. In persons with mental illness, psychoeducational therapy, including elements of cognitive behavioural therapy (CBT), seem to be effective in reducing self-stigma [73]. Yet, CBT has been found not to be effective in reducing stigma in other groups.

For medium- or long-term outcomes, systematic reviews have found there was not sufficient research to believe psychotherapy or entertainment/arts interventions can help to reduce stigma [64].

Conclusions

From this discussion, the authors draw the following conclusions. Stigma and discrimination appear to be universal in their presence and impact, although there are clear local and regional varations in their content and manifestations. Lay stigma by the general public constitutes a powerful force for social exclusion, and in addition there is also strong evidence that stigma among health-care professionals is a powerful barrier to the mental and physical health care needed by people with mental illness. There is now increasingly strong evidence that personal and social contact methods, including filmed/ virtual contact, is the most strongly evidence-based method to reduce stigma and discrimination. This evidence is now accumulating at inter-personal, organizational, and national levels. But as yet, there are few longer-term studies to know if such gains are sustainable in the long term. Nearly all the research evidence is from HICs, with a distinct evidence gap from LMICs. For the future, it is clear that service users are the central pioneers/key active ingredients in antistigma programmes and that interventions specifically locally and culturally adapted for use in LMICs are a pressing priority.

REFERENCES

- 1. Thornicroft, G. (2006). *Shunned: discrimination against people* with mental illness. Oxford University Press, New York, NY.
- 2. Corrigan, P.W. (2005). *On the stigma of mental illness: practical strategies for research and social change*. American Psychological Association, Washington, D.C.
- Yang, L., Cho, S.H., and Kleinman, A. (2010). Stigma of mental illness. In: Patel, V., Woodward, A., Feigin, V., Quah S.R., Heggenhougen, K. (eds.) *Mental and neurological public health: a global perspective*. Elsevier, San Diego, CA. pp. 219–30.
- 4. Thornicroft, G. (2011). Physical health disparities and mental illness: the scandal of premature mortality. *British Journal of Psychiatry*, 199, 441–2.
- 5. Lasalvia, A., Zoppei, S., Van Bortel, T., *et al.* (2013). Global pattern of experienced and anticipated discrimination reported by people with major depressive disorder: a cross-sectional survey. *The Lancet*, 381, 55–62.
- Rose, D., Willis, R., Brohan, E., *et al.* 2011. Reported stigma and discrimination by people with a diagnosis of schizophrenia. *Epidemiology and Psychiatric Sciences*, 20, 193–204.
- Thornicroft, G., Brohan, E., Rose, D., Sartorius, N., and Leese, M.; INDIGO Study Group. (2009). Global pattern of experienced and anticipated discrimination against people with schizophrenia: a cross-sectional survey. *The Lancet*, 373, 408–15.
- 8. Ucok, A., Brohan, E., Rose, D., *et al.* (2012). Anticipated discrimination among people with schizophrenia. *Acta Psychiatrica Scandinavica*, 125, 77–83.
- 9. Livingston, J.D. and Boyd J.E. (2010). Correlates and consequences of internalized stigma for people living with mental illness: a systematic review and meta-analysis. *Social Science and Medicine*, 71, 2150–61.

⁶ Reproduced from Informationsbroschuere; (Information brochure), Stark, wenn sich einer traut ueber seelische Probleme zu reden! Verrueckt? Na und! Das Schulprojekt von Irrsinnig Menschlich e.V.; (Cool when someone dares to speak about mental health problems! Crazy? So what! The School Project of the Association Irrsinnig Menschlich e.V., Copyright (2002), with permission from Irrsinnig Menschlich e.V.